BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24584068)

  • 41. Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests.
    Jing C; Meng X; Korfiatis GP
    J Hazard Mater; 2004 Oct; 114(1-3):101-10. PubMed ID: 15511579
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils.
    Pan G; Li L; Zhao D; Chen H
    Environ Pollut; 2010 Jan; 158(1):35-40. PubMed ID: 19732999
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Mechanism of groundwater As(V) removal with ferric flocculation and direct filtration].
    Kang Y; Duan JM; Jing CY
    Huan Jing Ke Xue; 2015 Feb; 36(2):523-9. PubMed ID: 26031078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water.
    Gupta A; Sankararamakrishnan N
    Bioresour Technol; 2010 Apr; 101(7):2173-9. PubMed ID: 20005095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sorptive removal of arsenate using termite mound.
    Fufa F; Alemayehu E; Lennartz B
    J Environ Manage; 2014 Jan; 132():188-96. PubMed ID: 24309232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reductive immobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles.
    Huo L; Xie W; Qian T; Guan X; Zhao D
    Chemosphere; 2017 May; 174():456-465. PubMed ID: 28187392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbothermal preparation of magnetic-responsible ferrihydrite based on Fe-rich precipitates for immobilization of arsenate and antimonate: Batch and spectroscopic studies.
    Lee SH; Takahashi Y
    Chemosphere; 2019 Dec; 237():124489. PubMed ID: 31549638
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arsenate removal from water using sand--red mud columns.
    Genç-Fuhrman H; Bregnhøj H; McConchie D
    Water Res; 2005 Aug; 39(13):2944-54. PubMed ID: 15979686
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate.
    Majzlan J
    Environ Sci Technol; 2011 Jun; 45(11):4726-32. PubMed ID: 21557572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil.
    Kumpiene J; Ore S; Renella G; Mench M; Lagerkvist A; Maurice C
    Environ Pollut; 2006 Nov; 144(1):62-9. PubMed ID: 16517035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leaching characteristics of CCA-treated wood waste: a UK study.
    Mercer TG; Frostick LE
    Sci Total Environ; 2012 Jun; 427-428():165-74. PubMed ID: 22575377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlling phosphate releasing from poultry litter using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Zhao D
    Sci Total Environ; 2016 Jan; 542(Pt B):1020-9. PubMed ID: 26442720
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessing arsenic leachability from pulverized cement concrete produced from arsenic-laden solid CalSiCo-sludge.
    Bhunia P; Pal A; Bandyopadhyay M
    J Hazard Mater; 2007 Mar; 141(3):826-33. PubMed ID: 16938388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of ferric sludge to immobilize leachable mercury in soils and concrete.
    Zhuang JM; Walsh T; Lam T; Boulter D
    Environ Technol; 2003 Nov; 24(11):1445-53. PubMed ID: 14733397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial variability of arsenic and chromium in the soil water at a former wood preserving site.
    Hopp L; Peiffer S; Durner W
    J Contam Hydrol; 2006 May; 85(3-4):159-78. PubMed ID: 16530293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Leaching of CCA-treated wood: implications for waste disposal.
    Townsend T; Tolaymat T; Solo-Gabriele H; Dubey B; Stook K; Wadanambi L
    J Hazard Mater; 2004 Oct; 114(1-3):75-91. PubMed ID: 15511577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud.
    Akin I; Arslan G; Tor A; Ersoz M; Cengeloglu Y
    J Hazard Mater; 2012 Oct; 235-236():62-8. PubMed ID: 22846216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of chromated copper arsenate structures on adjacent soil arsenic concentrations.
    Patch SC; Scheip K; Brooks B
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):662-5. PubMed ID: 21505794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate.
    Benhamou A; Basly JP; Baudu M; Derriche Z; Hamacha R
    J Colloid Interface Sci; 2013 Aug; 404():135-9. PubMed ID: 23684231
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sorption of triazoles to soil and iron minerals.
    Jia Y; Aagaard P; Breedveld GD
    Chemosphere; 2007 Feb; 67(2):250-8. PubMed ID: 17123582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.