These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24584068)

  • 61. Sorption of Pb(II) and Cu(II) onto multi-amine grafted mesoporous silica embedded with nano-magnetite: effects of steric factors.
    Chung J; Chun J; Lee J; Lee SH; Lee YJ; Hong SW
    J Hazard Mater; 2012 Nov; 239-240():183-91. PubMed ID: 22985819
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].
    Li L; Pan G; Chen H
    Huan Jing Ke Xue; 2010 Mar; 31(3):678-83. PubMed ID: 20358826
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.
    Cui Y; Weng L
    Environ Sci Technol; 2013 Jul; 47(13):7269-76. PubMed ID: 23751067
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions.
    Moon DH; Dermatas D
    J Hazard Mater; 2007 Mar; 141(2):388-94. PubMed ID: 16822609
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review.
    Borggaard OK; Gimsing AL
    Pest Manag Sci; 2008 Apr; 64(4):441-56. PubMed ID: 18161065
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles.
    Naja G; Apiratikul R; Pavasant P; Volesky B; Hawari J
    Environ Pollut; 2009; 157(8-9):2405-12. PubMed ID: 19345459
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Remediation of groundwater contaminated with arsenic through enhanced natural attenuation: Batch and column studies.
    Hafeznezami S; Zimmer-Faust AG; Jun D; Rugh MB; Haro HL; Park A; Suh J; Najm T; Reynolds MD; Davis JA; Parhizkar T; Jay JA
    Water Res; 2017 Oct; 122():545-556. PubMed ID: 28628877
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel.
    Biswas BK; Inoue J; Inoue K; Ghimire KN; Harada H; Ohto K; Kawakita H
    J Hazard Mater; 2008 Jun; 154(1-3):1066-74. PubMed ID: 18093733
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Application methods affect phosphorus-induced lead immobilization from a contaminated soil.
    Yoon JK; Cao X; Ma LQ
    J Environ Qual; 2007; 36(2):373-8. PubMed ID: 17255624
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles.
    Han B; Zhang M; Zhao D; Feng Y
    Water Res; 2015 Mar; 70():288-99. PubMed ID: 25543239
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica.
    Stark SC; Snape I; Graham NJ; Brennan JC; Gore DB
    J Environ Monit; 2008 Jan; 10(1):60-70. PubMed ID: 18175018
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of seepage conditions on chemical attenuation of arsenic by soils across an abandoned mine site.
    Hyun S; Kim J; Kim DY; Moon DH
    Chemosphere; 2012 May; 87(6):602-7. PubMed ID: 22300557
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Retardation of iron-cyanide complexes in the soil of a former manufactured gas plant site.
    Sut M; Repmann F; Raab T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(3):282-91. PubMed ID: 25594121
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Geochemical simulation of the stabilization process of vanadium-contaminated soil remediated with calcium oxide and ferrous sulfate.
    Zou Q; Li D; Jiang J; Aihemaiti A; Gao Y; Liu N; Liu J
    Ecotoxicol Environ Saf; 2019 Jun; 174():498-505. PubMed ID: 30856562
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Remediation of diesel contaminated soil by using activated persulfate with Fe
    Li YT; Sui Q; Li X; Liu XY; Liu H; Wang YQ; Du WY
    Environ Sci Pollut Res Int; 2024 May; 31(23):33385-33397. PubMed ID: 38678533
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Heteroaggregation of soil particulate organic matter and biogenic selenium nanoparticles for remediation of elemental mercury contamination.
    Wang X; Wang S; Pan X; Gadd GM
    Chemosphere; 2019 Apr; 221():486-492. PubMed ID: 30654263
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.
    Amin MM; Hatamipour MS; Momenbeik F; Nourmoradi H; Farhadkhani M; Mohammadi-Moghadam F
    ScientificWorldJournal; 2014; 2014():416752. PubMed ID: 24587723
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Raman spectroscopy of selected arsenates--implications for soil remediation.
    Frost RL; Kloprogge T; Weier ML; Martens WN; Ding Z; Edwards HG
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2241-6. PubMed ID: 12909138
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Application of magnesium peroxide (MgO
    Mosmeri H; Gholami F; Shavandi M; Alaie E; Dastgheib SMM
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31051-31061. PubMed ID: 30187405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.