BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24584136)

  • 1. Use of cone-beam computed tomography angiography in planning for gamma knife radiosurgery for arteriovenous malformations: a case series and early report.
    Safain MG; Rahal JP; Raval A; Rivard MJ; Mignano JE; Wu JK; Malek AM
    Neurosurgery; 2014 Jun; 74(6):682-95; discussion 695-6. PubMed ID: 24584136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning evaluation of C-arm cone beam CT angiography for target delineation in stereotactic radiation surgery of brain arteriovenous malformations.
    Kang J; Huang J; Gailloud P; Rigamonti D; Lim M; Bernard V; Ehtiati T; Ford EC
    Int J Radiat Oncol Biol Phys; 2014 Oct; 90(2):430-7. PubMed ID: 25015197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benefit of cone-beam computed tomography angiography in acute management of angiographically undetectable ruptured arteriovenous malformations.
    Rahal JP; Malek AM
    J Neurosurg; 2013 Oct; 119(4):1015-20. PubMed ID: 23683076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of rotational angiography enables better dose planning in Gamma Knife radiosurgery for brain arteriovenous malformations.
    Hasegawa H; Hanakita S; Shin M; Kawashima M; Kin T; Takahashi W; Suzuki Y; Shinya Y; Ono H; Shojima M; Nakatomi H; Saito N
    J Neurosurg; 2018 Dec; 129(Suppl1):17-25. PubMed ID: 30544289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. International multicenter cohort study of pediatric brain arteriovenous malformations. Part 2: Outcomes after stereotactic radiosurgery.
    Starke RM; Ding D; Kano H; Mathieu D; Huang PP; Feliciano C; Rodriguez-Mercado R; Almodovar L; Grills IS; Silva D; Abbassy M; Missios S; Kondziolka D; Barnett GH; Dade Lunsford L; Sheehan JP
    J Neurosurg Pediatr; 2017 Feb; 19(2):136-148. PubMed ID: 27911249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone-beam CT angiography (Dyna CT) for intraoperative localization of cerebral arteriovenous malformations.
    Srinivasan VM; Schafer S; Ghali MG; Arthur A; Duckworth EA
    J Neurointerv Surg; 2016 Jan; 8(1):69-74. PubMed ID: 25480885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planning of gamma knife radiosurgery (GKR) for brain arteriovenous malformations using triple magnetic resonance angiography (triple-MRA).
    Rojas-Villabona A; Sokolska M; Solbach T; Grieve J; Rega M; Torrealdea F; Pizzini FB; De Vita E; Suzuki Y; Van Osch MJP; Biondetti E; Shmueli K; Atkinson D; Murphy M; Paddick I; Golay X; Kitchen N; Jäger HR
    Br J Neurosurg; 2022 Apr; 36(2):217-227. PubMed ID: 33645357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric analysis of intracranial arteriovenous malformations contoured for CyberKnife radiosurgery with 3-dimensional rotational angiography vs computed tomography/magnetic resonance imaging.
    Veeravagu A; Hansasuta A; Jiang B; Karim AS; Gibbs IC; Chang SD
    Neurosurgery; 2013 Aug; 73(2):262-70. PubMed ID: 23615081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations.
    Pan DH; Guo WY; Chung WY; Shiau CY; Chang YC; Wang LW
    J Neurosurg; 2000 Dec; 93 Suppl 3():113-9. PubMed ID: 11143227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamma knife radiosurgery for arteriovenous malformations: general principles and preliminary results in a Swiss cohort.
    Raboud M; Tuleasca C; Maeder P; Schiappacasse L; Marguet M; Daniel RT; Levivier M
    Swiss Med Wkly; 2018; 148():w14602. PubMed ID: 29611866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Results of volume-staged fractionated Gamma Knife radiosurgery for large complex arteriovenous malformations: obliteration rates and clinical outcomes of an evolving treatment paradigm.
    Franzin A; Panni P; Spatola G; Del Vecchio A; Gallotti AL; Gigliotti CR; Cavalli A; Donofrio CA; Mortini P
    J Neurosurg; 2016 Dec; 125(Suppl 1):104-113. PubMed ID: 27903180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereotactic radiosurgery for arteriovenous malformations of the basal ganglia and thalamus: an international multicenter study.
    Chen CJ; Kearns KN; Ding D; Kano H; Mathieu D; Kondziolka D; Feliciano C; Rodriguez-Mercado R; Grills IS; Barnett GH; Lunsford LD; Sheehan JP
    J Neurosurg; 2019 Jan; 132(1):122-131. PubMed ID: 30641831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leksell Gamma Knife for pediatric and adolescent cerebral arteriovenous malformations: results of 100 cases followed up for at least 36 months.
    Nicolato A; Longhi M; Tommasi N; Ricciardi GK; Spinelli R; Foroni RI; Zivelonghi E; Zironi S; Dall'Oglio S; Beltramello A; Meglio M
    J Neurosurg Pediatr; 2015 Dec; 16(6):736-47. PubMed ID: 26339954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective and super-selective C-arm based cone beam CT angiography (CBCTA) with DynaCT for CyberKnife radiosurgery planning of intracranial arteriovenous malformations (AVMs).
    Holmes OE; Szanto J; Abitbul VT; Al Mansoori T; Al-Qahtani H; Sinclair J; Iancu D; Malone S
    J Radiosurg SBRT; 2018; 5(4):305-313. PubMed ID: 30538891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Time-Resolved 3D Digital Subtraction Angiography to Plan Cerebral Arteriovenous Malformation Radiosurgery.
    Chen KK; Guo WY; Yang HC; Lin CJ; Wu CF; Gehrisch S; Kowarschik M; Wu YT; Chung WY
    AJNR Am J Neuroradiol; 2017 Apr; 38(4):740-746. PubMed ID: 28126751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Cerebral Arteriovenous Malformation Obliteration With 3-Dimensional Rotational Digital Subtraction Angiography for Radiosurgical Planning: A Retrospective Cohort Study.
    Anderson JL; Khattab MH; Sherry AD; Luo G; Chitale RV; Froehler MT; Fusco MR; Cmelak AJ; Attia A
    Neurosurgery; 2020 Dec; 88(1):122-130. PubMed ID: 32717053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frameless Angiography-Based Gamma Knife Stereotactic Radiosurgery for Cerebral Arteriovenous Malformations: A Proof-of-Concept Study.
    Al Saiegh F; Liu H; El Naamani K; Mouchtouris N; Chen CJ; Khanna O; Abbas R; Velagapudi L; Baldassari MP; Reyes M; Schmidt RF; Tjoumakaris S; Gooch MR; Rosenwasser RH; Shi W; Jabbour P
    World Neurosurg; 2022 Aug; 164():e808-e813. PubMed ID: 35580781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early versus late arteriovenous malformation responders after stereotactic radiosurgery: an international multicenter study.
    Cohen-Inbar O; Starke RM; Paisan G; Kano H; Huang PP; Rodriguez-Mercado R; Almodovar L; Grills IS; Mathieu D; Silva D; Abbassy M; Missios S; Lee JYK; Barnett GH; Kondziolka D; Lunsford LD; Sheehan JP
    J Neurosurg; 2017 Sep; 127(3):503-511. PubMed ID: 27662534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate.
    Yamamoto Y; Coffey RJ; Nichols DA; Shaw EG
    J Neurosurg; 1995 Nov; 83(5):832-7. PubMed ID: 7472551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target delineation for radiosurgery of a small brain arteriovenous malformation using high-resolution contrast-enhanced cone beam CT.
    van der Bom IM; Gounis MJ; Ding L; Kühn AL; Goff D; Puri AS; Wakhloo AK
    J Neurointerv Surg; 2014 Jun; 6(5):e34. PubMed ID: 23997121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.