BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 24584715)

  • 1. Modelling the use of insecticide-treated cattle to control tsetse and Trypanosoma brucei rhodesiense in a multi-host population.
    Kajunguri D; Hargrove JW; Ouifki R; Mugisha JY; Coleman PG; Welburn SC
    Bull Math Biol; 2014 Mar; 76(3):673-96. PubMed ID: 24584715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling and control of African animal trypanosomosis with interacting populations in West Africa-Could biting flies be important in main taining the disease endemicity?
    Odeniran PO; Onifade AA; MacLeod ET; Ademola IO; Alderton S; Welburn SC
    PLoS One; 2020; 15(11):e0242435. PubMed ID: 33216770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the effect of insecticide-treated cattle on tsetse abundance and trypanosome transmission at the wildlife-livestock interface in Serengeti, Tanzania.
    Lord JS; Lea RS; Allan FK; Byamungu M; Hall DR; Lingley J; Mramba F; Paxton E; Vale GA; Hargrove JW; Morrison LJ; Torr SJ; Auty HK
    PLoS Negl Trop Dis; 2020 Aug; 14(8):e0008288. PubMed ID: 32841229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass-treatment and insecticide-spraying of animal reservoirs for emergency control of Rhodesiense sleeping sickness in Uganda.
    Magona JW; Walubengo J
    J Vector Borne Dis; 2011 Jun; 48(2):105-8. PubMed ID: 21715734
    [No Abstract]   [Full Text] [Related]  

  • 5. Polymerase chain reaction identification of
    Musaya J; Chisi J; Senga E; Nambala P; Maganga E; Matovu E; Enyaru J
    Malawi Med J; 2017 Mar; 29(1):5-9. PubMed ID: 28567189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the costs of tsetse control options: an example for Uganda.
    Shaw AP; Torr SJ; Waiswa C; Cecchi G; Wint GR; Mattioli RC; Robinson TP
    Prev Vet Med; 2013 Jul; 110(3-4):290-303. PubMed ID: 23453892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a model of gambiense sleeping sickness in humans and cattle.
    Ndondo AM; Munganga JM; Mwambakana JN; Saad-Roy CM; van den Driessche P; Walo RO
    J Biol Dyn; 2016; 10():347-65. PubMed ID: 27296784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Public-private partnership works to stamp out sleeping sickness in Uganda.
    Kabasa JD
    Trends Parasitol; 2007 May; 23(5):191-2. PubMed ID: 17392023
    [No Abstract]   [Full Text] [Related]  

  • 9. A global sensitivity analysis for African sleeping sickness.
    Davis S; Aksoy S; Galvani A
    Parasitology; 2011 Apr; 138(4):516-26. PubMed ID: 21078220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the impact of targeting livestock for the prevention of human and animal trypanosomiasis, at village level, in districts newly affected with T. b. rhodesiense in Uganda.
    Hamill L; Picozzi K; Fyfe J; von Wissmann B; Wastling S; Wardrop N; Selby R; Acup CA; Bardosh KL; Muhanguzi D; Kabasa JD; Waiswa C; Welburn SC
    Infect Dis Poverty; 2017 Feb; 6(1):16. PubMed ID: 28162093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmissibility of Trypanosoma brucei during its development in cattle.
    Van den Bossche P; Ky-Zerbo A; Brandt J; Marcotty T; Geerts S; De Deken R
    Trop Med Int Health; 2005 Sep; 10(9):833-9. PubMed ID: 16135189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crisis, what crisis? Control of Rhodesian sleeping sickness.
    Welburn SC; Coleman PG; Maudlin I; Fèvre EM; Odiit M; Eisler MC
    Trends Parasitol; 2006 Mar; 22(3):123-8. PubMed ID: 16458071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is there safety in numbers? The effect of cattle herding on biting risk from tsetse flies.
    Torr SJ; Prior A; Wilson PJ; Schofield S
    Med Vet Entomol; 2007 Dec; 21(4):301-11. PubMed ID: 18092968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated cost-benefit analysis of tsetse control and herd productivity to inform control programs for animal African trypanosomiasis.
    Meyer A; Holt HR; Oumarou F; Chilongo K; Gilbert W; Fauron A; Mumba C; Guitian J
    Parasit Vectors; 2018 Mar; 11(1):154. PubMed ID: 29514668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aiming to eliminate tsetse from Africa.
    Kabayo JP
    Trends Parasitol; 2002 Nov; 18(11):473-5. PubMed ID: 12473355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical Modelling of Human African Trypanosomiasis Using Control Measures.
    Gervas HE; Opoku NKO; Ibrahim S
    Comput Math Methods Med; 2018; 2018():5293568. PubMed ID: 30595713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania.
    Auty HK; Picozzi K; Malele I; Torr SJ; Cleaveland S; Welburn S
    PLoS Negl Trop Dis; 2012 Jan; 6(1):e1501. PubMed ID: 22303496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Less is more: restricted application of insecticide to cattle to improve the cost and efficacy of tsetse control.
    Torr SJ; Maudlin I; Vale GA
    Med Vet Entomol; 2007 Mar; 21(1):53-64. PubMed ID: 17373947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania.
    Auty H; Cleaveland S; Malele I; Masoy J; Lembo T; Bessell P; Torr S; Picozzi K; Welburn SC
    PLoS One; 2016; 11(10):e0161291. PubMed ID: 27706167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of tsetse-transmitted animal trypanosomiasis.
    Milligan PJ; Baker RD
    Parasitology; 1988 Feb; 96 ( Pt 1)():211-39. PubMed ID: 3362578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.