These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 24584715)
1. Modelling the use of insecticide-treated cattle to control tsetse and Trypanosoma brucei rhodesiense in a multi-host population. Kajunguri D; Hargrove JW; Ouifki R; Mugisha JY; Coleman PG; Welburn SC Bull Math Biol; 2014 Mar; 76(3):673-96. PubMed ID: 24584715 [TBL] [Abstract][Full Text] [Related]
2. Mathematical modelling and control of African animal trypanosomosis with interacting populations in West Africa-Could biting flies be important in main taining the disease endemicity? Odeniran PO; Onifade AA; MacLeod ET; Ademola IO; Alderton S; Welburn SC PLoS One; 2020; 15(11):e0242435. PubMed ID: 33216770 [TBL] [Abstract][Full Text] [Related]
3. Mass-treatment and insecticide-spraying of animal reservoirs for emergency control of Rhodesiense sleeping sickness in Uganda. Magona JW; Walubengo J J Vector Borne Dis; 2011 Jun; 48(2):105-8. PubMed ID: 21715734 [No Abstract] [Full Text] [Related]
4. Assessing the effect of insecticide-treated cattle on tsetse abundance and trypanosome transmission at the wildlife-livestock interface in Serengeti, Tanzania. Lord JS; Lea RS; Allan FK; Byamungu M; Hall DR; Lingley J; Mramba F; Paxton E; Vale GA; Hargrove JW; Morrison LJ; Torr SJ; Auty HK PLoS Negl Trop Dis; 2020 Aug; 14(8):e0008288. PubMed ID: 32841229 [TBL] [Abstract][Full Text] [Related]
6. Estimating the costs of tsetse control options: an example for Uganda. Shaw AP; Torr SJ; Waiswa C; Cecchi G; Wint GR; Mattioli RC; Robinson TP Prev Vet Med; 2013 Jul; 110(3-4):290-303. PubMed ID: 23453892 [TBL] [Abstract][Full Text] [Related]
7. Analysis of a model of gambiense sleeping sickness in humans and cattle. Ndondo AM; Munganga JM; Mwambakana JN; Saad-Roy CM; van den Driessche P; Walo RO J Biol Dyn; 2016; 10():347-65. PubMed ID: 27296784 [TBL] [Abstract][Full Text] [Related]
8. Public-private partnership works to stamp out sleeping sickness in Uganda. Kabasa JD Trends Parasitol; 2007 May; 23(5):191-2. PubMed ID: 17392023 [No Abstract] [Full Text] [Related]
9. A global sensitivity analysis for African sleeping sickness. Davis S; Aksoy S; Galvani A Parasitology; 2011 Apr; 138(4):516-26. PubMed ID: 21078220 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the impact of targeting livestock for the prevention of human and animal trypanosomiasis, at village level, in districts newly affected with T. b. rhodesiense in Uganda. Hamill L; Picozzi K; Fyfe J; von Wissmann B; Wastling S; Wardrop N; Selby R; Acup CA; Bardosh KL; Muhanguzi D; Kabasa JD; Waiswa C; Welburn SC Infect Dis Poverty; 2017 Feb; 6(1):16. PubMed ID: 28162093 [TBL] [Abstract][Full Text] [Related]
11. Transmissibility of Trypanosoma brucei during its development in cattle. Van den Bossche P; Ky-Zerbo A; Brandt J; Marcotty T; Geerts S; De Deken R Trop Med Int Health; 2005 Sep; 10(9):833-9. PubMed ID: 16135189 [TBL] [Abstract][Full Text] [Related]
12. Crisis, what crisis? Control of Rhodesian sleeping sickness. Welburn SC; Coleman PG; Maudlin I; Fèvre EM; Odiit M; Eisler MC Trends Parasitol; 2006 Mar; 22(3):123-8. PubMed ID: 16458071 [TBL] [Abstract][Full Text] [Related]
13. Is there safety in numbers? The effect of cattle herding on biting risk from tsetse flies. Torr SJ; Prior A; Wilson PJ; Schofield S Med Vet Entomol; 2007 Dec; 21(4):301-11. PubMed ID: 18092968 [TBL] [Abstract][Full Text] [Related]
14. Integrated cost-benefit analysis of tsetse control and herd productivity to inform control programs for animal African trypanosomiasis. Meyer A; Holt HR; Oumarou F; Chilongo K; Gilbert W; Fauron A; Mumba C; Guitian J Parasit Vectors; 2018 Mar; 11(1):154. PubMed ID: 29514668 [TBL] [Abstract][Full Text] [Related]
16. Mathematical Modelling of Human African Trypanosomiasis Using Control Measures. Gervas HE; Opoku NKO; Ibrahim S Comput Math Methods Med; 2018; 2018():5293568. PubMed ID: 30595713 [TBL] [Abstract][Full Text] [Related]
17. Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania. Auty HK; Picozzi K; Malele I; Torr SJ; Cleaveland S; Welburn S PLoS Negl Trop Dis; 2012 Jan; 6(1):e1501. PubMed ID: 22303496 [TBL] [Abstract][Full Text] [Related]
18. Less is more: restricted application of insecticide to cattle to improve the cost and efficacy of tsetse control. Torr SJ; Maudlin I; Vale GA Med Vet Entomol; 2007 Mar; 21(1):53-64. PubMed ID: 17373947 [TBL] [Abstract][Full Text] [Related]
19. Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania. Auty H; Cleaveland S; Malele I; Masoy J; Lembo T; Bessell P; Torr S; Picozzi K; Welburn SC PLoS One; 2016; 11(10):e0161291. PubMed ID: 27706167 [TBL] [Abstract][Full Text] [Related]
20. A model of tsetse-transmitted animal trypanosomiasis. Milligan PJ; Baker RD Parasitology; 1988 Feb; 96 ( Pt 1)():211-39. PubMed ID: 3362578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]