These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 24584903)
41. Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. Imhoff JF Int J Syst Evol Microbiol; 2003 Jul; 53(Pt 4):941-951. PubMed ID: 12892110 [TBL] [Abstract][Full Text] [Related]
42. Open quantum system parameters for light harvesting complexes from molecular dynamics. Wang X; Ritschel G; Wüster S; Eisfeld A Phys Chem Chem Phys; 2015 Oct; 17(38):25629-41. PubMed ID: 26372495 [TBL] [Abstract][Full Text] [Related]
43. Normal mode analysis of spectral density of FMO trimers: Intra- and intermonomer energy transfer. Klinger A; Lindorfer D; Müh F; Renger T J Chem Phys; 2020 Dec; 153(21):215103. PubMed ID: 33291900 [TBL] [Abstract][Full Text] [Related]
44. Calculation of pigment transition energies in the FMO protein: from simplicity to complexity and back. Adolphs J; Müh F; Madjet Mel-A; Renger T Photosynth Res; 2008; 95(2-3):197-209. PubMed ID: 17917787 [TBL] [Abstract][Full Text] [Related]
45. Modeling of various optical spectra in the presence of slow excitation energy transfer in dimers and trimers with weak interpigment coupling: FMO as an example. Herascu N; Kell A; Acharya K; Jankowiak R; Blankenship RE; Zazubovich V J Phys Chem B; 2014 Feb; 118(8):2032-40. PubMed ID: 24506338 [TBL] [Abstract][Full Text] [Related]
46. Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii. Neerken S; Permentier HP; Francke C; Aartsma TJ; Amesz J Biochemistry; 1998 Jul; 37(30):10792-7. PubMed ID: 9692969 [TBL] [Abstract][Full Text] [Related]
47. Chirality-based signatures of local protein environments in two-dimensional optical spectroscopy of two species photosynthetic complexes of green sulfur bacteria: simulation study. Voronine DV; Abramavicius D; Mukamel S Biophys J; 2008 Nov; 95(10):4896-907. PubMed ID: 18676650 [TBL] [Abstract][Full Text] [Related]
48. On the Controversial Nature of the 825 nm Exciton Band in the FMO Protein Complex. Kell A; Acharya K; Zazubovich V; Jankowiak R J Phys Chem Lett; 2014 Apr; 5(8):1450-6. PubMed ID: 26269993 [TBL] [Abstract][Full Text] [Related]
49. Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules. Szalkowski M; Ashraf KU; Lokstein H; Mackowski S; Cogdell RJ; Kowalska D Photosynth Res; 2016 Jan; 127(1):103-8. PubMed ID: 26168991 [TBL] [Abstract][Full Text] [Related]
50. Excitonic Energy Landscape of the Y16F Mutant of the Chlorobium tepidum Fenna-Matthews-Olson (FMO) Complex: High Resolution Spectroscopic and Modeling Studies. Khmelnitskiy A; Saer RG; Blankenship RE; Jankowiak R J Phys Chem B; 2018 Apr; 122(14):3734-3743. PubMed ID: 29554425 [TBL] [Abstract][Full Text] [Related]
51. Quantum Entanglement and State-Transference in Fenna-Matthews-Olson Complexes: A Post-Experimental Simulation Analysis in the Computational Biology Domain. Delgado F; Enríquez M Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446061 [TBL] [Abstract][Full Text] [Related]
52. Cryo-electron microscopy structure of the intact photosynthetic light-harvesting antenna-reaction center complex from a green sulfur bacterium. Chen JH; Wang W; Wang C; Kuang T; Shen JR; Zhang X J Integr Plant Biol; 2023 Jan; 65(1):223-234. PubMed ID: 36125941 [TBL] [Abstract][Full Text] [Related]
53. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U J Phys Chem B; 2011 Feb; 115(4):758-64. PubMed ID: 21142050 [TBL] [Abstract][Full Text] [Related]
54. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment. Tao MJ; Ai Q; Deng FG; Cheng YC Sci Rep; 2016 Jun; 6():27535. PubMed ID: 27277702 [TBL] [Abstract][Full Text] [Related]
55. A permanent hole burning study of the FMO antenna complex of the green sulfur bacterium Prosthecochloris aestuarii. Franken EM; Neerken S; Louwe RJ; Amesz J; Aartsma TJ Biochemistry; 1998 Apr; 37(15):5046-51. PubMed ID: 9548735 [TBL] [Abstract][Full Text] [Related]
56. Architecture of the photosynthetic complex from a green sulfur bacterium. Chen JH; Wu H; Xu C; Liu XC; Huang Z; Chang S; Wang W; Han G; Kuang T; Shen JR; Zhang X Science; 2020 Nov; 370(6519):. PubMed ID: 33214250 [TBL] [Abstract][Full Text] [Related]
57. Simulating signatures of two-dimensional electronic spectra of the Fenna-Matthews-Olson complex: By using a numerical path integral. Liang XT J Chem Phys; 2014 Jul; 141(4):044116. PubMed ID: 25084890 [TBL] [Abstract][Full Text] [Related]
58. Living on the edge: light-harvesting efficiency and photoprotection in the core of green sulfur bacteria. Klinger A; Lindorfer D; Müh F; Renger T Phys Chem Chem Phys; 2023 Jul; 25(28):18698-18710. PubMed ID: 37404080 [TBL] [Abstract][Full Text] [Related]
59. Effect of disorder and polarization sequences on two-dimensional spectra of light-harvesting complexes. Kramer T; Rodríguez M Photosynth Res; 2020 May; 144(2):147-154. PubMed ID: 31872335 [TBL] [Abstract][Full Text] [Related]
60. Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. He G; Zhang H; King JD; Blankenship RE Biochemistry; 2014 Aug; 53(30):4924-30. PubMed ID: 25014729 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]