BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24585255)

  • 1. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry.
    Hu W; Huang B; Weindorf DC; Chen Y
    Bull Environ Contam Toxicol; 2014 Apr; 92(4):420-6. PubMed ID: 24585255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.
    Ran J; Wang D; Wang C; Zhang G; Yao L
    Environ Sci Process Impacts; 2014 Aug; 16(8):1870-7. PubMed ID: 24875935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites.
    Jang M
    Environ Geochem Health; 2010 Jun; 32(3):207-16. PubMed ID: 19768558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ investigation of heavy metals at trace concentrations in greenhouse soils via portable X-ray fluorescence spectroscopy.
    Tian K; Huang B; Xing Z; Hu W
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):11011-11022. PubMed ID: 29404952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of in-situ portable X-ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction.
    Qu M; Chen J; Li W; Zhang C; Wan M; Huang B; Zhao Y
    Environ Pollut; 2019 Nov; 254(Pt A):112993. PubMed ID: 31401521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis].
    Ran J; Wang DJ; Wang C; Bo LJ; Zheng JC; Yao LP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3113-8. PubMed ID: 25752069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information depth of elements affects accuracy of parallel pXRF in situ measurements of soils.
    Hangen E; Čermák P; Geuß U; Hlisnikovský L
    Environ Monit Assess; 2019 Oct; 191(11):661. PubMed ID: 31650240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing risk and increasing confidence of decision making at a lower cost: In-situ pXRF assessment of metal-contaminated sites.
    Rouillon M; Taylor MP; Dong C
    Environ Pollut; 2017 Oct; 229():780-789. PubMed ID: 28668180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania.
    Weindorf DC; Paulette L; Man T
    Environ Pollut; 2013 Nov; 182():92-100. PubMed ID: 23906556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH.
    Qu M; Wang Y; Huang B; Zhao Y
    Environ Pollut; 2018 Sep; 240():184-190. PubMed ID: 29734079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses.
    Kilbride C; Poole J; Hutchings TR
    Environ Pollut; 2006 Sep; 143(1):16-23. PubMed ID: 16406626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research?
    Rouillon M; Taylor MP
    Environ Pollut; 2016 Jul; 214():255-264. PubMed ID: 27100216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China.
    Yang S; Zhou D; Yu H; Wei R; Pan B
    Environ Pollut; 2013 Jun; 177():64-70. PubMed ID: 23466733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS.
    Suh J; Lee H; Choi Y
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27916970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China.
    Sun C; Liu J; Wang Y; Sun L; Yu H
    Chemosphere; 2013 Jul; 92(5):517-23. PubMed ID: 23608467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment.
    Yang M; Wang C; Yang ZP; Yan N; Li FY; Diao YW; Chen MD; Li HM; Wang JH; Qian X
    Ecotoxicol Environ Saf; 2018 May; 153():68-77. PubMed ID: 29407740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additional sampling using in-situ portable X-ray fluorescence (PXRF) for rapid and high-precision investigation of soil heavy metals at a regional scale.
    Qu M; Guang X; Liu H; Zhao Y; Huang B
    Environ Pollut; 2022 Jan; 292(Pt A):118324. PubMed ID: 34637827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial-based assessment of metal contamination in agricultural soils near an abandoned copper mine of eastern China.
    Qin C; Luo C; Chen Y; Shen Z
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):113-8. PubMed ID: 22526992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correcting correlation quality of portable X-ray fluorescence to better map heavy metal contamination by spatial co-kriging interpolation.
    Zhao M; Chen Z; Qian C; Zhao Y; Xu Y; Liu Y
    Ecotoxicol Environ Saf; 2024 Feb; 271():115962. PubMed ID: 38237394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient and toxic elements in soils and plants across 10 urban community gardens: Comparing pXRF and ICP-based soil measurements.
    McStay AC; Walser SL; Sirkovich EC; Perdrial N; Richardson JB
    J Environ Qual; 2022 May; 51(3):439-450. PubMed ID: 35419845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.