These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24585255)

  • 21. Nutrient and toxic elements in soils and plants across 10 urban community gardens: Comparing pXRF and ICP-based soil measurements.
    McStay AC; Walser SL; Sirkovich EC; Perdrial N; Richardson JB
    J Environ Qual; 2022 May; 51(3):439-450. PubMed ID: 35419845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry.
    McGladdery C; Weindorf DC; Chakraborty S; Li B; Paulette L; Podar D; Pearson D; Kusi NYO; Duda B
    J Environ Manage; 2018 Mar; 210():210-225. PubMed ID: 29348058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.
    Lee H; Choi Y; Suh J; Lee SH
    Int J Environ Res Public Health; 2016 Mar; 13(4):384. PubMed ID: 27043594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Status of metal accumulation in farmland soils across China: from distribution to risk assessment.
    Niu L; Yang F; Xu C; Yang H; Liu W
    Environ Pollut; 2013 May; 176():55-62. PubMed ID: 23416269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detailed characterization of iron-rich tailings after the Fundão dam failure, Brazil, with inclusion of proximal sensors data, as a secure basis for environmental and agricultural restoration.
    T Silva de Sá R; Tesser Antunes Prianti M; Andrade R; Oliveira Silva A; Rodrigues Batista É; Valentim Dos Santos J; Magno Silva F; Aurélio Carbone Carneiro M; Roberto Guimarães Guilherme L; Chakraborty S; C Weindorf D; Curi N; Henrique Godinho Silva S; Teixeira Ribeiro B
    Environ Res; 2023 Jul; 228():115858. PubMed ID: 37062481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.
    Zhao Y; Fang X; Mu Y; Cheng Y; Ma Q; Nian H; Yang C
    Bull Environ Contam Toxicol; 2014 Apr; 92(4):427-32. PubMed ID: 24519477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating trace elements in urban forest soils across three contrasting New England USA towns and cities by pXRF and mass spectrometry.
    Sirkovich EC; Walser SL; Perdrial N; Richardson JB
    Environ Pollut; 2023 Nov; 336():122441. PubMed ID: 37652231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.
    Hu B; Chen S; Hu J; Xia F; Xu J; Li Y; Shi Z
    PLoS One; 2017; 12(2):e0172438. PubMed ID: 28234944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast Monitoring Soil Environmental Qualities of Heavy Metal by Portable X-Ray Fluorescence Spectrometer.
    Wang B; Yu JX; Huang B; Hu WY; Chang Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1735-40. PubMed ID: 26601400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing soil contamination in automobile scrap yards by portable X-ray fluorescence spectrometry and magnetic susceptibility.
    Barbosa JZ; Poggere GC; Teixeira WWR; Motta ACV; Prior SA; Curi N
    Environ Monit Assess; 2019 Dec; 192(1):46. PubMed ID: 31844991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China.
    Lu A; Wang J; Qin X; Wang K; Han P; Zhang S
    Sci Total Environ; 2012 May; 425():66-74. PubMed ID: 22459886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture.
    Weindorf DC; Zhu Y; Chakraborty S; Bakr N; Huang B
    Environ Monit Assess; 2012 Jan; 184(1):217-27. PubMed ID: 21384116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid in situ determination of heavy metal concentrations in polluted water via portable XRF: Using Cu and Pb as example.
    Zhou S; Yuan Z; Cheng Q; Zhang Z; Yang J
    Environ Pollut; 2018 Dec; 243(Pt B):1325-1333. PubMed ID: 30268983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of iron-rich tailings via portable X-ray fluorescence spectrometry: the Mariana dam disaster, southeast Brazil.
    Ferreira GWD; Ribeiro BT; Weindorf DC; Teixeira BI; Chakraborty S; Li B; Guilherme LRG; Scolforo JRS
    Environ Monit Assess; 2021 Mar; 193(4):203. PubMed ID: 33751261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data.
    Kim SM; Choi Y
    Int J Environ Res Public Health; 2017 Jun; 14(6):. PubMed ID: 28629168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of field portable X-ray fluorescence spectrometry for the in situ determination of heavy metals in soils and plants.
    Gutiérrez-Ginés MJ; Pastor J; Hernández AJ
    Environ Sci Process Impacts; 2013 Aug; 15(8):1545-52. PubMed ID: 23793270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources.
    Caporale AG; Adamo P; Capozzi F; Langella G; Terribile F; Vingiani S
    Sci Total Environ; 2018 Dec; 643():516-526. PubMed ID: 29945086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ monitoring (field screening) and assessment of lead and arsenic contaminants in the greater New Orleans area using a portable X-ray fluorescence analyser.
    Chou J; Elbers D; Clement G; Bursavich B; Tian T; Zhang W; Yang K
    J Environ Monit; 2010 Sep; 12(9):1722-9. PubMed ID: 20601988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.
    Parsons C; Margui Grabulosa E; Pili E; Floor GH; Roman-Ross G; Charlet L
    J Hazard Mater; 2013 Nov; 262():1213-22. PubMed ID: 22819961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.