These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24585368)

  • 1. Ab-initio study of structural, electronic, and transport properties of zigzag GaP nanotubes.
    Srivastava A; Jain SK; Khare PS
    J Mol Model; 2014 Mar; 20(3):2171. PubMed ID: 24585368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the optical properties and electronic structure of gallium phosphide nanotubes doped with arsenic via implementing first-principles calculations.
    Nawaf S; Rzaij JM; Al-Jobory AA; Motlak M
    J Mol Model; 2024 Jul; 30(8):243. PubMed ID: 38955842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopy and structure of crystalline gallium phosphide nanowires.
    Xiong Q; Gupta R; Adu KW; Dickey EC; Lian GD; Tham D; Fischer JE; Eklund PC
    J Nanosci Nanotechnol; 2003 Aug; 3(4):335-9. PubMed ID: 14598449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography.
    Verheijen MA; Algra RE; Borgström MT; Immink G; Sourty E; Enckevort WJ; Vlieg E; Bakkers EP
    Nano Lett; 2007 Oct; 7(10):3051-5. PubMed ID: 17887714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doping induced structural stability and electronic properties of GaN nanotubes.
    Srivastava A; Khan MI; Tyagi N; Swaroop Khare P
    ScientificWorldJournal; 2014; 2014():984591. PubMed ID: 24707225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The H2 dissociation on the BN, AlN, BP and AlP nanotubes: a comparative study.
    Beheshtian J; Soleymanabadi H; Kamfiroozi M; Ahmadi A
    J Mol Model; 2012 Jun; 18(6):2343-8. PubMed ID: 21979405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes.
    Herrera-Carbajal A; Rodríguez-Lugo V; Hernández-Ávila J; Sánchez-Castillo A
    Phys Chem Chem Phys; 2021 Jun; 23(23):13075-13086. PubMed ID: 34042934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gallium phosphide nanowires as a substrate for cultured neurons.
    Hällström W; Mårtensson T; Prinz C; Gustavsson P; Montelius L; Samuelson L; Kanje M
    Nano Lett; 2007 Oct; 7(10):2960-5. PubMed ID: 17880143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electronic structure of lithium metagallate.
    Johnson NW; McLeod JA; Moewes A
    J Phys Condens Matter; 2011 Nov; 23(44):445501. PubMed ID: 22004925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-walled MoTe(2) nanotubes.
    Wu X; Xu Z; Zeng XC
    Nano Lett; 2007 Oct; 7(10):2987-92. PubMed ID: 17725376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct band gap wurtzite gallium phosphide nanowires.
    Assali S; Zardo I; Plissard S; Kriegner D; Verheijen MA; Bauer G; Meijerink A; Belabbes A; Bechstedt F; Haverkort JE; Bakkers EP
    Nano Lett; 2013 Apr; 13(4):1559-63. PubMed ID: 23464761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio modeling of TiO2 nanotubes.
    Szieberth D; Ferrari AM; Noel Y; Ferrabone M
    Nanoscale; 2010 Jan; 2(1):81-9. PubMed ID: 20648368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution and electronic properties of medium-sized gallium clusters from ab initio genetic algorithm search.
    Sai L; Zhao J; Huang X; Wang J
    J Nanosci Nanotechnol; 2012 Jan; 12(1):132-7. PubMed ID: 22523956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiality of phosphide-based nanotubes for breast cancer detection: A DFT investigation.
    Rahman AU; Saaduzzaman DM; Hasan SM; Sikder MKU
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38861946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress, strain, and NMR.
    Zwanziger JW; Werner-Zwanziger U; Shaw JL; So C
    Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):113-8. PubMed ID: 16253484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube conditioning part 1-effect of interwall interaction on the electronic band gap of double-walled carbon nanotubes.
    Soto M; Vajtai R; Ajayan PM; Barrera EV
    Nanotechnology; 2018 Jan; 29(4):045701. PubMed ID: 29199975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio modeling of trititanate nanotubes.
    Szieberth D; Ferrari AM; D'Arco P; Orlando R
    Nanoscale; 2011 Mar; 3(3):1113-9. PubMed ID: 21203646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electronic structure of MgO nanotubes. An ab initio quantum mechanical investigation.
    El-Kelany KE; Ferrabone M; Rérat M; Carbonnière P; Zicovich-Wilson CM; Dovesi R
    Phys Chem Chem Phys; 2013 Aug; 15(32):13296-303. PubMed ID: 23657356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio study of stoichiometric gallium phosphide clusters.
    Kamal C; Ghanty TK; Banerjee A; Chakrabarti A
    J Chem Phys; 2009 Jan; 130(2):024308. PubMed ID: 19154029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.