These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24586030)

  • 41. Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae).
    Wang YH; Wicke S; Wang H; Jin JJ; Chen SY; Zhang SD; Li DZ; Yi TS
    Front Plant Sci; 2018; 9():138. PubMed ID: 29479365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lost and Found: Return of the Inverted Repeat in the Legume Clade Defined by Its Absence.
    Choi IS; Jansen R; Ruhlman T
    Genome Biol Evol; 2019 Apr; 11(4):1321-1333. PubMed ID: 31046101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.
    Szczecińska M; Sawicki J
    Int J Mol Sci; 2015 Sep; 16(9):22258-79. PubMed ID: 26389887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of plastid genomes in the genus Ceratostigma inhabiting arid habitats in China and their phylogenomic implications.
    Zhao YJ; Liu J; Yin GS; Gong X
    BMC Plant Biol; 2023 Jun; 23(1):303. PubMed ID: 37280518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The evolution of chloroplast genome structure in ferns.
    Wolf PG; Roper JM; Duffy AM
    Genome; 2010 Sep; 53(9):731-8. PubMed ID: 20924422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distinctive evolutionary pattern of organelle genomes linked to the nuclear genome in Selaginellaceae.
    Kang JS; Zhang HR; Wang YR; Liang SQ; Mao ZY; Zhang XC; Xiang QP
    Plant J; 2020 Dec; 104(6):1657-1672. PubMed ID: 33073395
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The plastome sequence of Bactris gasipaes and evolutionary analysis in tribe Cocoseae (Arecaceae).
    Santos da Silva R; Roland Clement C; Balsanelli E; de Baura VA; Maltempi de Souza E; Pacheco de Freitas Fraga H; do Nascimento Vieira L
    PLoS One; 2021; 16(8):e0256373. PubMed ID: 34428237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plastid genome evolution in tribe Desmodieae (Fabaceae: Papilionoideae).
    Jin DP; Choi IS; Choi BH
    PLoS One; 2019; 14(6):e0218743. PubMed ID: 31233545
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species.
    Hirao T; Watanabe A; Kurita M; Kondo T; Takata K
    BMC Plant Biol; 2008 Jun; 8():70. PubMed ID: 18570682
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plastid Phylogenomics and Plastomic Diversity of the Extant Lycophytes.
    Chen S; Wang T; Shu J; Xiang Q; Yang T; Zhang X; Yan Y
    Genes (Basel); 2022 Jul; 13(7):. PubMed ID: 35886063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The complete plastid genomes of Ophrys iricolor and O. sphegodes (Orchidaceae) and comparative analyses with other orchids.
    Roma L; Cozzolino S; Schlüter PM; Scopece G; Cafasso D
    PLoS One; 2018; 13(9):e0204174. PubMed ID: 30226857
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative Genomic Analysis Reveals the Mechanism Driving the Diversification of Plastomic Structure in Taxaceae Species.
    Zhang Y; Xu Y; Chen H; Wang L; Yin K; Du FK
    Front Genet; 2019; 10():1295. PubMed ID: 32010180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative chloroplast genomes of pinaceae: insights into the mechanism of diversified genomic organizations.
    Wu CS; Lin CP; Hsu CY; Wang RJ; Chaw SM
    Genome Biol Evol; 2011; 3():309-19. PubMed ID: 21402866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative analysis of chloroplast genomes of seven Juniperus species from Kazakhstan.
    Almerekova S; Yermagambetova M; Jumanov S; Abugalieva S; Turuspekov Y
    PLoS One; 2024; 19(1):e0295550. PubMed ID: 38271463
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plastome organization, genome-based phylogeny and evolution of plastid genes in Podophylloideae (Berberidaceae).
    Ye WQ; Yap ZY; Li P; Comes HP; Qiu YX
    Mol Phylogenet Evol; 2018 Oct; 127():978-987. PubMed ID: 29981470
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enlarged and highly repetitive plastome of Lagarostrobos and plastid phylogenomics of Podocarpaceae.
    Sudianto E; Wu CS; Leonhard L; Martin WF; Chaw SM
    Mol Phylogenet Evol; 2019 Apr; 133():24-32. PubMed ID: 30553879
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae).
    Naumann J; Der JP; Wafula EK; Jones SS; Wagner ST; Honaas LA; Ralph PE; Bolin JF; Maass E; Neinhuis C; Wanke S; dePamphilis CW
    Genome Biol Evol; 2016 Jan; 8(2):345-63. PubMed ID: 26739167
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba.
    Shrestha B; Weng ML; Theriot EC; Gilbert LE; Ruhlman TA; Krosnick SE; Jansen RK
    Mol Phylogenet Evol; 2019 Sep; 138():53-64. PubMed ID: 31129347
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative genomic analysis of Polypodiaceae chloroplasts reveals fine structural features and dynamic insertion sequences.
    Liu S; Wang Z; Su Y; Wang T
    BMC Plant Biol; 2021 Jan; 21(1):31. PubMed ID: 33413107
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates.
    Zhu A; Guo W; Gupta S; Fan W; Mower JP
    New Phytol; 2016 Mar; 209(4):1747-56. PubMed ID: 26574731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.