These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 24586100)
41. Role of GSH/GSSG redox couple in osteogenic activity and osteoclastogenic markers of human osteoblast-like SaOS-2 cells. Romagnoli C; Marcucci G; Favilli F; Zonefrati R; Mavilia C; Galli G; Tanini A; Iantomasi T; Brandi ML; Vincenzini MT FEBS J; 2013 Feb; 280(3):867-79. PubMed ID: 23176170 [TBL] [Abstract][Full Text] [Related]
42. Contribution of mitochondrial GSH transport to matrix GSH status and colonic epithelial cell apoptosis. Circu ML; Rodriguez C; Maloney R; Moyer MP; Aw TY Free Radic Biol Med; 2008 Mar; 44(5):768-78. PubMed ID: 18267208 [TBL] [Abstract][Full Text] [Related]
43. Monitoring intracellular redox changes in ozone-exposed airway epithelial cells. Gibbs-Flournoy EA; Simmons SO; Bromberg PA; Dick TP; Samet JM Environ Health Perspect; 2013 Mar; 121(3):312-7. PubMed ID: 23249900 [TBL] [Abstract][Full Text] [Related]
44. Platyhelminth mitochondrial and cytosolic redox homeostasis is controlled by a single thioredoxin glutathione reductase and dependent on selenium and glutathione. Bonilla M; Denicola A; Novoselov SV; Turanov AA; Protasio A; Izmendi D; Gladyshev VN; Salinas G J Biol Chem; 2008 Jun; 283(26):17898-907. PubMed ID: 18408002 [TBL] [Abstract][Full Text] [Related]
45. The involvement of L-gamma-glutamyl-L-cysteinyl-glycine (glutathione/GSH) in the mechanism of redox signaling mediating MAPK(p38)-dependent regulation of pro-inflammatory cytokine production. Haddad JJ Biochem Pharmacol; 2002 Jan; 63(2):305-20. PubMed ID: 11841806 [TBL] [Abstract][Full Text] [Related]
46. Contrasting effects of thiol-modulating agents on endothelial NO bioactivity. Huang A; Xiao H; Samii JM; Vita JA; Keaney JF Am J Physiol Cell Physiol; 2001 Aug; 281(2):C719-25. PubMed ID: 11443071 [TBL] [Abstract][Full Text] [Related]
47. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. Hanson GT; Aggeler R; Oglesbee D; Cannon M; Capaldi RA; Tsien RY; Remington SJ J Biol Chem; 2004 Mar; 279(13):13044-53. PubMed ID: 14722062 [TBL] [Abstract][Full Text] [Related]
48. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction. Geissel F; Lang L; Husemann B; Morgan B; Deponte M Nat Commun; 2024 Feb; 15(1):1733. PubMed ID: 38409212 [TBL] [Abstract][Full Text] [Related]
49. Cytosolic and mitochondrial glutathione in microglial cells are differentially affected by oxidative/nitrosative stress. Roychowdhury S; Wolf G; Keilhoff G; Horn TF Nitric Oxide; 2003 Feb; 8(1):39-47. PubMed ID: 12586540 [TBL] [Abstract][Full Text] [Related]
50. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology. Wagener KC; Kolbrink B; Dietrich K; Kizina KM; Terwitte LS; Kempkes B; Bao G; Müller M Antioxid Redox Signal; 2016 Jul; 25(1):41-58. PubMed ID: 27059697 [TBL] [Abstract][Full Text] [Related]
51. Glutathione oxidation and embryotoxicity elicited by diamide in the developing rat conceptus in vitro. Hiranruengchok R; Harris C Toxicol Appl Pharmacol; 1993 May; 120(1):62-71. PubMed ID: 8511783 [TBL] [Abstract][Full Text] [Related]
52. Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease. Merad-Boudia M; Nicole A; Santiard-Baron D; Saillé C; Ceballos-Picot I Biochem Pharmacol; 1998 Sep; 56(5):645-55. PubMed ID: 9783733 [TBL] [Abstract][Full Text] [Related]
53. Glutathione modulates Ca(2+) influx and oxidative toxicity through TRPM2 channel in rat dorsal root ganglion neurons. Nazıroğlu M; Özgül C; Çiğ B; Doğan S; Uğuz AC J Membr Biol; 2011 Aug; 242(3):109-18. PubMed ID: 21748272 [TBL] [Abstract][Full Text] [Related]
54. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Gergondey R; Garcia C; Marchand CH; Lemaire SD; Camadro JM; Auchère F Biochem J; 2017 Mar; 474(7):1175-1193. PubMed ID: 28167699 [TBL] [Abstract][Full Text] [Related]
55. Mitochondrial respiratory enzyme function and superoxide dismutase activity following brain glutathione depletion in the rat. Seaton TA; Jenner P; Marsden CD Biochem Pharmacol; 1996 Dec; 52(11):1657-63. PubMed ID: 8986127 [TBL] [Abstract][Full Text] [Related]
56. Reduction potentials of protein disulfides and catalysis of glutathionylation and deglutathionylation by glutaredoxin enzymes. Ukuwela AA; Bush AI; Wedd AG; Xiao Z Biochem J; 2017 Nov; 474(22):3799-3815. PubMed ID: 28963348 [TBL] [Abstract][Full Text] [Related]
57. Pathways of glutathione metabolism and transport in isolated proximal tubular cells from rat kidney. Visarius TM; Putt DA; Schare JM; Pegouske DM; Lash LH Biochem Pharmacol; 1996 Jul; 52(2):259-72. PubMed ID: 8694851 [TBL] [Abstract][Full Text] [Related]
58. Stable Integration and Comparison of hGrx1-roGFP2 and sfroGFP2 Redox Probes in the Malaria Parasite Plasmodium falciparum. Schuh AK; Rahbari M; Heimsch KC; Mohring F; Gabryszewski SJ; Weder S; Buchholz K; Rahlfs S; Fidock DA; Becker K ACS Infect Dis; 2018 Nov; 4(11):1601-1612. PubMed ID: 30129748 [TBL] [Abstract][Full Text] [Related]
59. Confocal imaging of glutathione redox potential in living plant cells. Schwarzländer M; Fricker MD; Müller C; Marty L; Brach T; Novak J; Sweetlove LJ; Hell R; Meyer AJ J Microsc; 2008 Aug; 231(2):299-316. PubMed ID: 18778428 [TBL] [Abstract][Full Text] [Related]
60. Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum. Kasozi D; Mohring F; Rahlfs S; Meyer AJ; Becker K PLoS Pathog; 2013; 9(12):e1003782. PubMed ID: 24348249 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]