These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24586125)

  • 1. Learning gene networks under SNP perturbations using eQTL datasets.
    Zhang L; Kim S
    PLoS Comput Biol; 2014 Feb; 10(2):e1003420. PubMed ID: 24586125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of SNP-gene regulatory networks by integrating gene expressions and genetic perturbations.
    Kim DC; Wang J; Liu C; Gao J
    Biomed Res Int; 2014; 2014():629697. PubMed ID: 25136606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning gene networks underlying clinical phenotypes using SNP perturbation.
    McCarter C; Howrylak J; Kim S
    PLoS Comput Biol; 2020 Oct; 16(10):e1007940. PubMed ID: 33095769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene network inference via structural equation modeling in genetical genomics experiments.
    Liu B; de la Fuente A; Hoeschele I
    Genetics; 2008 Mar; 178(3):1763-76. PubMed ID: 18245846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and robust group-wise eQTL mapping using sparse graphical models.
    Cheng W; Shi Y; Zhang X; Wang W
    BMC Bioinformatics; 2015 Jan; 16():2. PubMed ID: 25593000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping eQTL networks with mixed graphical Markov models.
    Tur I; Roverato A; Castelo R
    Genetics; 2014 Dec; 198(4):1377-93. PubMed ID: 25271303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-confidence discovery of genetic network regulators in expression quantitative trait loci data.
    Duarte CW; Zeng ZB
    Genetics; 2011 Mar; 187(3):955-64. PubMed ID: 21212238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetical genomics analysis of a yeast segregant population for transcription network inference.
    Bing N; Hoeschele I
    Genetics; 2005 Jun; 170(2):533-42. PubMed ID: 15781693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured association analysis leads to insight into Saccharomyces cerevisiae gene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules.
    Curtis RE; Kim S; Woolford JL; Xu W; Xing EP
    BMC Genomics; 2013 Mar; 14():196. PubMed ID: 23514438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective framework for reconstructing gene regulatory networks from genetical genomics data.
    Flassig RJ; Heise S; Sundmacher K; Klamt S
    Bioinformatics; 2013 Jan; 29(2):246-54. PubMed ID: 23175757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs.
    Lee S; Xing EP
    Bioinformatics; 2012 Jun; 28(12):i137-46. PubMed ID: 22689753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint eQTL mapping and inference of gene regulatory network improves power of detecting both cis- and trans-eQTLs.
    Zhou X; Cai X
    Bioinformatics; 2021 Dec; 38(1):149-156. PubMed ID: 34487140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning gene networks under SNP perturbation using SNP and allele-specific expression data.
    Yoon JH; Kim S
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A predictive model of the oxygen and heme regulatory network in yeast.
    Kundaje A; Xin X; Lan C; Lianoglou S; Zhou M; Zhang L; Leslie C
    PLoS Comput Biol; 2008 Nov; 4(11):e1000224. PubMed ID: 19008939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning a prior on regulatory potential from eQTL data.
    Lee SI; Dudley AM; Drubin D; Silver PA; Krogan NJ; Pe'er D; Koller D
    PLoS Genet; 2009 Jan; 5(1):e1000358. PubMed ID: 19180192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.
    Ju JH; Shenoy SA; Crystal RG; Mezey JG
    PLoS Comput Biol; 2017 May; 13(5):e1005537. PubMed ID: 28505156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.