These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 24586162)
1. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. Chen YS; Bastidas RJ; Saka HA; Carpenter VK; Richards KL; Plano GV; Valdivia RH PLoS Pathog; 2014 Feb; 10(2):e1003954. PubMed ID: 24586162 [TBL] [Abstract][Full Text] [Related]
2. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP. Brinkworth AJ; Malcolm DS; Pedrosa AT; Roguska K; Shahbazian S; Graham JE; Hayward RD; Carabeo RA Mol Microbiol; 2011 Oct; 82(1):131-44. PubMed ID: 21883523 [TBL] [Abstract][Full Text] [Related]
3. Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis. Pais SV; Milho C; Almeida F; Mota LJ PLoS One; 2013; 8(2):e56292. PubMed ID: 23431368 [TBL] [Abstract][Full Text] [Related]
4. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion. Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA mBio; 2021 Jan; 12(1):. PubMed ID: 33468693 [No Abstract] [Full Text] [Related]
5. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors. Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332 [TBL] [Abstract][Full Text] [Related]
6. The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Carpenter V; Chen YS; Dolat L; Valdivia RH mSphere; 2017; 2(4):. PubMed ID: 28744480 [No Abstract] [Full Text] [Related]
7. Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system. da Cunha M; Milho C; Almeida F; Pais SV; Borges V; Maurício R; Borrego MJ; Gomes JP; Mota LJ BMC Microbiol; 2014 Feb; 14():40. PubMed ID: 24533538 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during Ghosh S; Ruelke EA; Ferrell JC; Bodero MD; Fields KA; Jewett TJ Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32152196 [TBL] [Abstract][Full Text] [Related]
9. Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin. Clifton DR; Dooley CA; Grieshaber SS; Carabeo RA; Fields KA; Hackstadt T Infect Immun; 2005 Jul; 73(7):3860-8. PubMed ID: 15972471 [TBL] [Abstract][Full Text] [Related]
10. Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases. Jewett TJ; Dooley CA; Mead DJ; Hackstadt T Biochem Biophys Res Commun; 2008 Jun; 371(2):339-44. PubMed ID: 18442471 [TBL] [Abstract][Full Text] [Related]
11. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates. Fields KA; Fischer ER; Mead DJ; Hackstadt T J Bacteriol; 2005 Sep; 187(18):6466-78. PubMed ID: 16159780 [TBL] [Abstract][Full Text] [Related]
12. The Herrera CM; McMahon E; Swaney DL; Sherry J; Pha K; Adams-Boone K; Johnson JR; Krogan NJ; Stevers M; Solomon D; Elwell C; Engel J Microbiol Spectr; 2024 Jul; 12(7):e0045324. PubMed ID: 38814079 [No Abstract] [Full Text] [Related]
14. The Chlamydia trachomatis Tarp effector targets the Hippo pathway. Shehat MG; Aranjuez GF; Kim J; Jewett TJ Biochem Biophys Res Commun; 2021 Jul; 562():133-138. PubMed ID: 34052658 [TBL] [Abstract][Full Text] [Related]
15. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. Spaeth KE; Chen YS; Valdivia RH PLoS Pathog; 2009 Sep; 5(9):e1000579. PubMed ID: 19750218 [TBL] [Abstract][Full Text] [Related]
16. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. Elwell CA; Ceesay A; Kim JH; Kalman D; Engel JN PLoS Pathog; 2008 Mar; 4(3):e1000021. PubMed ID: 18369471 [TBL] [Abstract][Full Text] [Related]
17. Chlamydia trachomatis Type III Secretion Proteins Regulate Transcription. Hanson BR; Slepenkin A; Peterson EM; Tan M J Bacteriol; 2015 Oct; 197(20):3238-44. PubMed ID: 26216849 [TBL] [Abstract][Full Text] [Related]
18. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Hower S; Wolf K; Fields KA Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098 [TBL] [Abstract][Full Text] [Related]
19. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. Lane BJ; Mutchler C; Al Khodor S; Grieshaber SS; Carabeo RA PLoS Pathog; 2008 Mar; 4(3):e1000014. PubMed ID: 18383626 [TBL] [Abstract][Full Text] [Related]
20. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Fields KA; Hackstadt T Mol Microbiol; 2000 Dec; 38(5):1048-60. PubMed ID: 11123678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]