These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24586190)

  • 21. Additive Phenotypes Underlie Epistasis of Fitness Effects.
    Sackman AM; Rokyta DR
    Genetics; 2018 Jan; 208(1):339-348. PubMed ID: 29113978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection biases the prevalence and type of epistasis along adaptive trajectories.
    Draghi JA; Plotkin JB
    Evolution; 2013 Nov; 67(11):3120-31. PubMed ID: 24151997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of weak clonal interference on average fitness trajectories in the presence of macroscopic epistasis.
    Guo Y; Amir A
    Genetics; 2022 Apr; 220(4):. PubMed ID: 35171996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex fitness landscape shapes variation in a hyperpolymorphic species.
    Stolyarova AV; Neretina TV; Zvyagina EA; Fedotova AV; Kondrashov AS; Bazykin GA
    Elife; 2022 May; 11():. PubMed ID: 35532122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation Through Lifestyle Switching Sculpts the Fitness Landscape of Evolving Populations: Implications for the Selection of Drug-Resistant Bacteria at Low Drug Pressures.
    Matange N; Hegde S; Bodkhe S
    Genetics; 2019 Mar; 211(3):1029-1044. PubMed ID: 30670539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Beneficial Mutations in pykF Gene Vary over Time and across Replicate Populations in a Long-Term Experiment with Bacteria.
    Peng F; Widmann S; Wünsche A; Duan K; Donovan KA; Dobson RCJ; Lenski RE; Cooper TF
    Mol Biol Evol; 2018 Jan; 35(1):202-210. PubMed ID: 29069429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental modulation of global epistasis in a drug resistance fitness landscape.
    Diaz-Colunga J; Sanchez A; Ogbunugafor CB
    Nat Commun; 2023 Dec; 14(1):8055. PubMed ID: 38052815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the incongruence of genotype-phenotype and fitness landscapes.
    Srivastava M; Payne JL
    PLoS Comput Biol; 2022 Sep; 18(9):e1010524. PubMed ID: 36121840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast growth increases the selective advantage of a mutation arising recurrently during evolution under metal limitation.
    Chou HH; Berthet J; Marx CJ
    PLoS Genet; 2009 Sep; 5(9):e1000652. PubMed ID: 19763169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Initial mutations direct alternative pathways of protein evolution.
    Salverda ML; Dellus E; Gorter FA; Debets AJ; van der Oost J; Hoekstra RF; Tawfik DS; de Visser JA
    PLoS Genet; 2011 Mar; 7(3):e1001321. PubMed ID: 21408208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories.
    Weinreich DM; Watson RA; Chao L
    Evolution; 2005 Jun; 59(6):1165-74. PubMed ID: 16050094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region.
    da Silva J; Coetzer M; Nedellec R; Pastore C; Mosier DE
    Genetics; 2010 May; 185(1):293-303. PubMed ID: 20157005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modular epistasis and the compensatory evolution of gene deletion mutants.
    Rojas Echenique JI; Kryazhimskiy S; Nguyen Ba AN; Desai MM
    PLoS Genet; 2019 Feb; 15(2):e1007958. PubMed ID: 30768593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dynamics of adaptation on correlated fitness landscapes.
    Kryazhimskiy S; Tkacik G; Plotkin JB
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18638-43. PubMed ID: 19858497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global epistasis on fitness landscapes.
    Diaz-Colunga J; Skwara A; Gowda K; Diaz-Uriarte R; Tikhonov M; Bajic D; Sanchez A
    Philos Trans R Soc Lond B Biol Sci; 2023 May; 378(1877):20220053. PubMed ID: 37004717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A shift from magnitude to sign epistasis during adaptive evolution of a bacterial social trait.
    Zee PC; Mendes-Soares H; Yu YT; Kraemer SA; Keller H; Ossowski S; Schneeberger K; Velicer GJ
    Evolution; 2014 Sep; 68(9):2701-8. PubMed ID: 24909926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental change exposes beneficial epistatic interactions in a catalytic RNA.
    Hayden EJ; Wagner A
    Proc Biol Sci; 2012 Sep; 279(1742):3418-25. PubMed ID: 22719036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stickbreaking: a novel fitness landscape model that harbors epistasis and is consistent with commonly observed patterns of adaptive evolution.
    Nagel AC; Joyce P; Wichman HA; Miller CR
    Genetics; 2012 Feb; 190(2):655-67. PubMed ID: 22095084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly expressed genes evolve under strong epistasis from a proteome-wide scan in E. coli.
    Dasmeh P; Girard É; Serohijos AWR
    Sci Rep; 2017 Nov; 7(1):15844. PubMed ID: 29158562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The population genetics of adaptation: multiple substitutions on a smooth fitness landscape.
    Unckless RL; Orr HA
    Genetics; 2009 Nov; 183(3):1079-86. PubMed ID: 19737750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.