These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 2458625)

  • 1. Identification of an intracellular peptide segment involved in sodium channel inactivation.
    Vassilev PM; Scheuer T; Catterall WA
    Science; 1988 Sep; 241(4873):1658-61. PubMed ID: 2458625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of inactivation of single sodium channels by a site-directed antibody.
    Vassilev P; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):8147-51. PubMed ID: 2554301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping a region associated with Na channel inactivation using antibodies to a synthetic peptide corresponding to a part of the channel.
    Meiri H; Spira G; Sammar M; Namir M; Schwartz A; Komoriya A; Kosower EM; Palti Y
    Proc Natl Acad Sci U S A; 1987 Jul; 84(14):5058-62. PubMed ID: 2440041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels.
    Balser JR; Nuss HB; Chiamvimonvat N; Pérez-García MT; Marban E; Tomaselli GF
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):431-42. PubMed ID: 8842002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs.
    Catterall WA
    Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation.
    McPhee JC; Ragsdale DS; Scheuer T; Catterall WA
    J Biol Chem; 1995 May; 270(20):12025-34. PubMed ID: 7744852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of inactivation and block of open sodium channels by an inactivation gate peptide.
    Eaholtz G; Scheuer T; Catterall WA
    Neuron; 1994 May; 12(5):1041-8. PubMed ID: 8185942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels.
    Kurata HT; Wang Z; Fedida D
    J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium channel inactivation is altered by substitution of voltage sensor positive charges.
    Kontis KJ; Goldin AL
    J Gen Physiol; 1997 Oct; 110(4):403-13. PubMed ID: 9379172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels.
    Vedantham V; Cannon SC
    J Gen Physiol; 1999 Jan; 113(1):7-16. PubMed ID: 9874684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle.
    Ruff RL; Simoncini L; Stühmer W
    J Physiol; 1987 Feb; 383():339-48. PubMed ID: 2443650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow sodium channel inactivation in rat fast-twitch muscle.
    Simoncini L; Stühmer W
    J Physiol; 1987 Feb; 383():327-37. PubMed ID: 2443649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence.
    Ong BH; Tomaselli GF; Balser JR
    J Gen Physiol; 2000 Nov; 116(5):653-62. PubMed ID: 11055994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β1 subunit stabilises sodium channel Nav1.7 against mechanical stress.
    Körner J; Meents J; Machtens JP; Lampert A
    J Physiol; 2018 Jun; 596(12):2433-2445. PubMed ID: 29659026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit.
    Rogers JC; Qu Y; Tanada TN; Scheuer T; Catterall WA
    J Biol Chem; 1996 Jul; 271(27):15950-62. PubMed ID: 8663157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Nav1.6 Channels Generate Larger Resurgent Currents than Human Nav1.1 Channels, but the Navβ4 Peptide Does Not Protect Either Isoform from Use-Dependent Reduction.
    Patel RR; Barbosa C; Xiao Y; Cummins TR
    PLoS One; 2015; 10(7):e0133485. PubMed ID: 26182346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between fast and slow inactivation revealed by analysis of a point mutation (F1304Q) in mu 1 rat skeletal muscle sodium channels.
    Nuss HB; Balser JR; Orias DW; Lawrence JH; Tomaselli GF; Marban E
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):411-29. PubMed ID: 8842001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium current-dependent and voltage-dependent inactivation of calcium channels in Helix aspersa.
    Brown AM; Morimoto K; Tsuda Y; wilson DL
    J Physiol; 1981 Nov; 320():193-218. PubMed ID: 6275075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation.
    McPhee JC; Ragsdale DS; Scheuer T; Catterall WA
    J Biol Chem; 1998 Jan; 273(2):1121-9. PubMed ID: 9422778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of the action of Leiurus scorpion alpha-toxin on ionic currents in myelinated nerve.
    Wang GK; Strichartz G
    J Gen Physiol; 1985 Nov; 86(5):739-62. PubMed ID: 2415671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.