These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24586354)
21. On the use of on-cow accelerometers for the classification of behaviours in dairy barns. Benaissa S; Tuyttens FAM; Plets D; de Pessemier T; Trogh J; Tanghe E; Martens L; Vandaele L; Van Nuffel A; Joseph W; Sonck B Res Vet Sci; 2019 Aug; 125():425-433. PubMed ID: 29174287 [TBL] [Abstract][Full Text] [Related]
22. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data. Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798 [TBL] [Abstract][Full Text] [Related]
23. Dairy cattle behavior classifications based on decision tree learning using 3-axis neck-mounted accelerometers. Tamura T; Okubo Y; Deguchi Y; Koshikawa S; Takahashi M; Chida Y; Okada K Anim Sci J; 2019 Apr; 90(4):589-596. PubMed ID: 30773740 [TBL] [Abstract][Full Text] [Related]
24. Digging into the behaviour of an active hunting predator: arctic fox prey caching events revealed by accelerometry. Clermont J; Woodward-Gagné S; Berteaux D Mov Ecol; 2021 Nov; 9(1):58. PubMed ID: 34838144 [TBL] [Abstract][Full Text] [Related]
25. Gait and posture discrimination in sheep using a tri-axial accelerometer. Radeski M; Ilieski V Animal; 2017 Jul; 11(7):1249-1257. PubMed ID: 27903315 [TBL] [Abstract][Full Text] [Related]
26. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V; Muhammad U; Rostami M; Oussalah M Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729 [TBL] [Abstract][Full Text] [Related]
27. Frequency domain approach for activity classification using accelerometer. Chung WY; Purwar A; Sharma A Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1120-3. PubMed ID: 19162860 [TBL] [Abstract][Full Text] [Related]
28. An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data. Procter DS; Page AS; Cooper AR; Nightingale CM; Ram B; Rudnicka AR; Whincup PH; Clary C; Lewis D; Cummins S; Ellaway A; Giles-Corti B; Cook DG; Owen CG Int J Behav Nutr Phys Act; 2018 Sep; 15(1):91. PubMed ID: 30241483 [TBL] [Abstract][Full Text] [Related]
29. Feature selection for elderly faller classification based on wearable sensors. Howcroft J; Kofman J; Lemaire ED J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724 [TBL] [Abstract][Full Text] [Related]
30. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity. Zhou SM; Hill RA; Morgan K; Stratton G; Gravenor MB; Bijlsma G; Brophy S BMJ Open; 2015 May; 5(5):e007447. PubMed ID: 25968000 [TBL] [Abstract][Full Text] [Related]
31. An artificial intelligence approach to predicting personality types in dogs. Amirhosseini MH; Yadav V; Serpell JA; Pettigrew P; Kain P Sci Rep; 2024 Jan; 14(1):2404. PubMed ID: 38286813 [TBL] [Abstract][Full Text] [Related]
32. Assessment of Machine Learning Models to Identify Port Jackson Shark Behaviours Using Tri-Axial Accelerometers. Kadar JP; Ladds MA; Day J; Lyall B; Brown C Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322308 [TBL] [Abstract][Full Text] [Related]
33. Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning. Bidder OR; Walker JS; Jones MW; Holton MD; Urge P; Scantlebury DM; Marks NJ; Magowan EA; Maguire IE; Wilson RP Mov Ecol; 2015; 3(1):23. PubMed ID: 26380711 [TBL] [Abstract][Full Text] [Related]
34. Development of an image classification pipeline for atherosclerotic plaques assessment using supervised machine learning. Kunchur NN; Mostaço-Guidolin LB BMC Bioinformatics; 2022 Dec; 23(1):542. PubMed ID: 36517749 [TBL] [Abstract][Full Text] [Related]
35. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
36. Predicting human movement with multiple accelerometers using movelets. He B; Bai J; Zipunnikov VV; Koster A; Caserotti P; Lange-Maia B; Glynn NW; Harris TB; Crainiceanu CM Med Sci Sports Exerc; 2014 Sep; 46(9):1859-66. PubMed ID: 25134005 [TBL] [Abstract][Full Text] [Related]
37. Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers. García-Massó X; Serra-Añó P; Gonzalez LM; Ye-Lin Y; Prats-Boluda G; Garcia-Casado J Spinal Cord; 2015 Oct; 53(10):772-7. PubMed ID: 25987002 [TBL] [Abstract][Full Text] [Related]
38. Feature selection and activity recognition system using a single triaxial accelerometer. Gupta P; Dallas T IEEE Trans Biomed Eng; 2014 Jun; 61(6):1780-6. PubMed ID: 24691526 [TBL] [Abstract][Full Text] [Related]
39. The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats ( Smit M; Ikurior SJ; Corner-Thomas RA; Andrews CJ; Draganova I; Thomas DG Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631701 [TBL] [Abstract][Full Text] [Related]
40. Analysis of Decision Tree and K-Nearest Neighbor Algorithm in the Classification of Breast Cancer. Rajaguru H; S R SC Asian Pac J Cancer Prev; 2019 Dec; 20(12):3777-3781. PubMed ID: 31870121 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]