These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 24586529)

  • 1. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes.
    Bondarenko VE
    PLoS One; 2014; 9(2):e89113. PubMed ID: 24586529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct physiological effects of β
    Rozier K; Bondarenko VE
    Am J Physiol Cell Physiol; 2017 May; 312(5):C595-C623. PubMed ID: 28122730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the effects of moderate stimulation/inhibition of the β1-adrenergic signaling system and its components in mouse ventricular myocytes.
    Grinshpon M; Bondarenko VE
    Am J Physiol Cell Physiol; 2016 Jun; 310(11):C844-56. PubMed ID: 26936457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compartmentalized mathematical model of mouse atrial myocytes.
    Asfaw TN; Tyan L; Glukhov AV; Bondarenko VE
    Am J Physiol Heart Circ Physiol; 2020 Mar; 318(3):H485-H507. PubMed ID: 31951471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling physiological effects of the overexpression of β
    Rozier K; Bondarenko VE
    Am J Physiol Heart Circ Physiol; 2018 Mar; 314(3):H643-H658. PubMed ID: 29101164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model for β
    Mullins PD; Bondarenko VE
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H264-H282. PubMed ID: 31834834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compartmentalized mathematical model of the β
    Asfaw TN; Bondarenko VE
    Am J Physiol Cell Physiol; 2023 Feb; 324(2):C263-C291. PubMed ID: 36468844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.
    Negroni JA; Morotti S; Lascano EC; Gomes AV; Grandi E; Puglisi JL; Bers DM
    J Mol Cell Cardiol; 2015 Apr; 81():162-75. PubMed ID: 25724724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte.
    Macdougall DA; Agarwal SR; Stopford EA; Chu H; Collins JA; Longster AL; Colyer J; Harvey RD; Calaghan S
    J Mol Cell Cardiol; 2012 Feb; 52(2):388-400. PubMed ID: 21740911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of variability in an integrated model of human ventricular electrophysiology and β-adrenergic signaling.
    Gong JQX; Susilo ME; Sher A; Musante CJ; Sobie EA
    J Mol Cell Cardiol; 2020 Jun; 143():96-106. PubMed ID: 32330487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex differences in SR Ca(2+) release in murine ventricular myocytes are regulated by the cAMP/PKA pathway.
    Parks RJ; Ray G; Bienvenu LA; Rose RA; Howlett SE
    J Mol Cell Cardiol; 2014 Oct; 75():162-73. PubMed ID: 25066697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases.
    Leroy J; Abi-Gerges A; Nikolaev VO; Richter W; Lechêne P; Mazet JL; Conti M; Fischmeister R; Vandecasteele G
    Circ Res; 2008 May; 102(9):1091-100. PubMed ID: 18369156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arrhythmogenic remodeling of β2 versus β1 adrenergic signaling in the human failing heart.
    Lang D; Holzem K; Kang C; Xiao M; Hwang HJ; Ewald GA; Yamada KA; Efimov IR
    Circ Arrhythm Electrophysiol; 2015 Apr; 8(2):409-19. PubMed ID: 25673629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β
    Yang HQ; Wang LP; Gong YY; Fan XX; Zhu SY; Wang XT; Wang YP; Li LL; Xing X; Liu XX; Ji GS; Hou T; Zhang Y; Xiao RP; Wang SQ
    Circ Res; 2019 Apr; 124(9):1350-1359. PubMed ID: 30836825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximal acceleration of Ca2+ release refractoriness by β-adrenergic stimulation requires dual activation of kinases PKA and CaMKII in mouse ventricular myocytes.
    Poláková E; Illaste A; Niggli E; Sobie EA
    J Physiol; 2015 Mar; 593(6):1495-507. PubMed ID: 25772298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A long lasting β1 adrenergic receptor stimulation of cAMP/protein kinase A (PKA) signal in cardiac myocytes.
    Fu Q; Kim S; Soto D; De Arcangelis V; DiPilato L; Liu S; Xu B; Shi Q; Zhang J; Xiang YK
    J Biol Chem; 2014 May; 289(21):14771-81. PubMed ID: 24713698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of adrenergic signaling in cardiac myocytes and implications for pharmacological treatment.
    Meyer EE; Clancy CE; Lewis TJ
    J Theor Biol; 2021 Jun; 519():110619. PubMed ID: 33740423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways.
    Wang W; Zhang H; Gao H; Kubo H; Berretta RM; Chen X; Houser SR
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H322-31. PubMed ID: 20495143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and K
    Wang X; Fitts RH
    J Appl Physiol (1985); 2017 Aug; 123(2):285-296. PubMed ID: 28522761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentation of β
    Rudokas MW; Post JP; Sataray-Rodriguez A; Sherpa RT; Moshal KS; Agarwal SR; Harvey RD
    Br J Pharmacol; 2021 Apr; 178(7):1574-1587. PubMed ID: 33475150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.