These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris. Kalmar JM; Cafarelli E J Appl Physiol (1985); 2006 Jun; 100(6):1757-64. PubMed ID: 16424071 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of corticospinal changes during and after high-intensity quadriceps exercise. Gruet M; Temesi J; Rupp T; Levy P; Verges S; Millet GY Exp Physiol; 2014 Aug; 99(8):1053-64. PubMed ID: 24907029 [TBL] [Abstract][Full Text] [Related]
6. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise. Weavil JC; Sidhu SK; Mangum TS; Richardson RS; Amann M Am J Physiol Regul Integr Comp Physiol; 2015 Jun; 308(12):R998-1007. PubMed ID: 25876651 [TBL] [Abstract][Full Text] [Related]
8. Effects of fatigue on corticospinal excitability of the human knee extensors. Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591 [TBL] [Abstract][Full Text] [Related]
9. Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation. Aboodarda SJ; Mira J; Floreani M; Jaswal R; Moon SJ; Amery K; Rupp T; Millet GY Eur J Appl Physiol; 2018 Nov; 118(11):2295-2305. PubMed ID: 30128852 [TBL] [Abstract][Full Text] [Related]
10. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Temesi J; Rupp T; Martin V; Arnal PJ; Féasson L; Verges S; Millet GY Med Sci Sports Exerc; 2014 Jun; 46(6):1166-75. PubMed ID: 24195865 [TBL] [Abstract][Full Text] [Related]
11. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805 [TBL] [Abstract][Full Text] [Related]
12. Heavy-resistance exercise-induced increases in jump performance are not explained by changes in neuromuscular function. Thomas K; Toward A; West DJ; Howatson G; Goodall S Scand J Med Sci Sports; 2017 Jan; 27(1):35-44. PubMed ID: 26639349 [TBL] [Abstract][Full Text] [Related]
13. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation. Bowtell JL; Avenell G; Hunter SP; Mileva KN PLoS One; 2013; 8(10):e77004. PubMed ID: 24098574 [TBL] [Abstract][Full Text] [Related]
14. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Sidhu SK; Weavil JC; Mangum TS; Jessop JE; Richardson RS; Morgan DE; Amann M Clin Neurophysiol; 2017 Jan; 128(1):44-55. PubMed ID: 27866119 [TBL] [Abstract][Full Text] [Related]
15. Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Hilty L; Lutz K; Maurer K; Rodenkirch T; Spengler CM; Boutellier U; Jäncke L; Amann M Exp Physiol; 2011 May; 96(5):505-17. PubMed ID: 21317218 [TBL] [Abstract][Full Text] [Related]
16. Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men. Temesi J; Vernillo G; Martin M; Krüger RL; McNeil CJ; Millet GY Neuroscience; 2019 Dec; 422():88-98. PubMed ID: 31682821 [TBL] [Abstract][Full Text] [Related]
17. Corticospinal changes induced by fatiguing eccentric versus concentric exercise. Garnier YM; Paizis C; Lepers R Eur J Sport Sci; 2019 Mar; 19(2):166-176. PubMed ID: 30016203 [TBL] [Abstract][Full Text] [Related]