BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24586851)

  • 21. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.
    Guzman LM; Belin D; Carson MJ; Beckwith J
    J Bacteriol; 1995 Jul; 177(14):4121-30. PubMed ID: 7608087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new and unexpected domain-domain interaction in the AraC protein.
    Cole SD; Schleif R
    Proteins; 2012 May; 80(5):1465-75. PubMed ID: 22383259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of the Escherichia coli L-arabinose operon studied by gel electrophoresis DNA binding assay.
    Hendrickson W; Schleif RF
    J Mol Biol; 1984 Sep; 178(3):611-28. PubMed ID: 6387154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Timing and dynamics of single cell gene expression in the arabinose utilization system.
    Megerle JA; Fritz G; Gerland U; Jung K; Rädler JO
    Biophys J; 2008 Aug; 95(4):2103-15. PubMed ID: 18469087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arabinose Alters Both Local and Distal H-D Exchange Rates in the Escherichia coli AraC Transcriptional Regulator.
    Tischer A; Brown MJ; Schleif RF; Auton M
    Biochemistry; 2019 Jul; 58(26):2875-2882. PubMed ID: 31199144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A genetic and physical study of the interdomain linker of E. Coli AraC protein--a trans-subunit communication pathway.
    Malaga F; Mayberry O; Park DJ; Rodgers ME; Toptygin D; Schleif RF
    Proteins; 2016 Apr; 84(4):448-60. PubMed ID: 26800223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dominance relationships among mutant alleles of regulatory gene araC in the Escherichia coli B/R L-arabinose operon.
    Sheppard DE
    J Bacteriol; 1986 Nov; 168(2):999-1001. PubMed ID: 3023295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon.
    Haldimann A; Daniels LL; Wanner BL
    J Bacteriol; 1998 Mar; 180(5):1277-86. PubMed ID: 9495769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli.
    Koita K; Rao CV
    PLoS One; 2012; 7(8):e43700. PubMed ID: 22952739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional activation of ydeA, which encodes a member of the major facilitator superfamily, interferes with arabinose accumulation and induction of the Escherichia coli arabinose PBAD promoter.
    Bost S; Silva F; Belin D
    J Bacteriol; 1999 Apr; 181(7):2185-91. PubMed ID: 10094697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of heterologous expression from PBAD promoter in Escherichia coli production strains.
    Széliová D; Krahulec J; Šafránek M; Lišková V; Turňa J
    J Biotechnol; 2016 Oct; 236():1-9. PubMed ID: 27498315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter.
    Khlebnikov A; Datsenko KA; Skaug T; Wanner BL; Keasling JD
    Microbiology (Reading); 2001 Dec; 147(Pt 12):3241-7. PubMed ID: 11739756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of gene expression from the arabinose-inducible araBAD promoter.
    Khlebnikov A; Skaug T; Keasling JD
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):34-7. PubMed ID: 12080425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo single-molecule kinetics of activation and subsequent activity of the arabinose promoter.
    Mäkelä J; Kandhavelu M; Oliveira SM; Chandraseelan JG; Lloyd-Price J; Peltonen J; Yli-Harja O; Ribeiro AS
    Nucleic Acids Res; 2013 Jul; 41(13):6544-52. PubMed ID: 23644285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternative DNA loops regulate the arabinose operon in Escherichia coli.
    Huo L; Martin KJ; Schleif R
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5444-8. PubMed ID: 3041410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic force microscopy measurements and model of DNA bending caused by binding of AraC protein.
    Lowe M; Glezer B; Toulan B; Hess B
    J Mol Recognit; 2023 Jan; 36(1):e2993. PubMed ID: 36112092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation of half-site organization and DNA looping by AraC protein.
    Carra JH; Schleif RF
    EMBO J; 1993 Jan; 12(1):35-44. PubMed ID: 8428590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.