BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24586862)

  • 1. RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization.
    Chen M; Glenn JV; Dasari S; McVicar C; Ward M; Colhoun L; Quinn M; Bierhaus A; Xu H; Stitt AW
    PLoS One; 2014; 9(2):e89548. PubMed ID: 24586862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced choroidal neovascularization in mice attenuated by deficiency in the apelin-APJ system.
    Hara C; Kasai A; Gomi F; Satooka T; Sakimoto S; Nakai K; Yoshioka Y; Yamamuro A; Maeda S; Nishida K
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4321-9. PubMed ID: 23722395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Expression of S100B and RAGE in a Mouse Model of Bile Duct Ligation-induced Liver Fibrosis.
    Park JW; Kim MJ; Kim SE; Kim HJ; Jeon YC; Shin HY; Park SJ; Jang MK; Kim DJ; Park CK; Choi EK
    J Korean Med Sci; 2021 Apr; 36(14):e90. PubMed ID: 33847081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TIMP-3 suppression induces choroidal neovascularization by moderating the polarization of macrophages in age-related macular degeneration.
    Cheng Y; Cheng T; Qu Y
    Mol Immunol; 2019 Feb; 106():119-126. PubMed ID: 30594674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-angiogenic effect of the basement membrane protein nidogen-1 in a mouse model of choroidal neovascularization.
    Semkova I; Kociok N; Karagiannis D; Nischt R; Smyth N; Paulsson M; Strauß O; Joussen AM
    Exp Eye Res; 2014 Jan; 118():80-8. PubMed ID: 24280453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia specific SDF-1 expression by retinal pigment epithelium initiates bone marrow-derived cells to participate in Choroidal neovascularization in a laser-induced mouse model.
    Zhang ZX; Wang YS; Shi YY; Hou HY; Zhang C; Cai Y; Dou GR; Yao LB; Li FY
    Curr Eye Res; 2011 Sep; 36(9):838-49. PubMed ID: 21851170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages.
    Wang H; Zhang L; Zhang IY; Chen X; Da Fonseca A; Wu S; Ren H; Badie S; Sadeghi S; Ouyang M; Warden CD; Badie B
    Clin Cancer Res; 2013 Jul; 19(14):3764-75. PubMed ID: 23719262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.
    Huang H; Parlier R; Shen JK; Lutty GA; Vinores SA
    PLoS One; 2013; 8(8):e71808. PubMed ID: 23977149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.
    Wang H; Han X; Wittchen ES; Hartnett ME
    Mol Vis; 2016; 22():116-28. PubMed ID: 26900328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-dependent changes in FasL (CD95L) modulate macrophage function in a model of age-related macular degeneration.
    Zhao H; Roychoudhury J; Doggett TA; Apte RS; Ferguson TA
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5321-31. PubMed ID: 23821188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monocyte-Derived Macrophages Are Necessary for Beta-Adrenergic Receptor-Driven Choroidal Neovascularization Inhibition.
    Droho S; Cuda CM; Perlman H; Lavine JA
    Invest Ophthalmol Vis Sci; 2019 Dec; 60(15):5059-5069. PubMed ID: 31800964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methallothionein-3 contributes to vascular endothelial growth factor induction in a mouse model of choroidal neovascularization.
    Choi JA; Hwang JU; Yoon YH; Koh JY
    Metallomics; 2013 Oct; 5(10):1387-96. PubMed ID: 23962989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration.
    Little K; Llorián-Salvador M; Tang M; Du X; Marry S; Chen M; Xu H
    J Neuroinflammation; 2020 Nov; 17(1):355. PubMed ID: 33239022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serine racemase deficiency attenuates choroidal neovascularization and reduces nitric oxide and VEGF levels by retinal pigment epithelial cells.
    Jiang H; Wu M; Liu Y; Song L; Li S; Wang X; Zhang YF; Fang J; Wu S
    J Neurochem; 2017 Nov; 143(3):375-388. PubMed ID: 28892569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocular macrophage origin and heterogeneity during steady state and experimental choroidal neovascularization.
    Droho S; Thomson BR; Makinde HM; Cuda CM; Perlman H; Lavine JA
    J Neuroinflammation; 2020 Nov; 17(1):341. PubMed ID: 33187533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperglycaemia-induced pro-inflammatory responses by retinal Müller glia are regulated by the receptor for advanced glycation end-products (RAGE).
    Zong H; Ward M; Madden A; Yong PH; Limb GA; Curtis TM; Stitt AW
    Diabetologia; 2010 Dec; 53(12):2656-66. PubMed ID: 20835858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different distributions of M1 and M2 macrophages in a mouse model of laser-induced choroidal neovascularization.
    Zhou Y; Yoshida S; Kubo Y; Yoshimura T; Kobayashi Y; Nakama T; Yamaguchi M; Ishikawa K; Oshima Y; Ishibashi T
    Mol Med Rep; 2017 Jun; 15(6):3949-3956. PubMed ID: 28440413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization.
    Wang H; Han X; Gambhir D; Becker S; Kunz E; Liu AJ; Hartnett ME
    PLoS One; 2016; 11(6):e0157748. PubMed ID: 27309355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model.
    Kim SY; Kambhampati SP; Bhutto IA; McLeod DS; Lutty GA; Kannan RM
    Exp Eye Res; 2021 Feb; 203():108391. PubMed ID: 33307075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically-determined hyperfunction of the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients.
    Cunha C; Giovannini G; Pierini A; Bell AS; Sorci G; Riuzzi F; Donato R; Rodrigues F; Velardi A; Aversa F; Romani L; Carvalho A
    PLoS One; 2011; 6(11):e27962. PubMed ID: 22114731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.