BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24586998)

  • 1. Ecology and caudal skeletal morphology in birds: the convergent evolution of pygostyle shape in underwater foraging taxa.
    Felice RN; O'Connor PM
    PLoS One; 2014; 9(2):e89737. PubMed ID: 24586998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coevolution of caudal skeleton and tail feathers in birds.
    Felice RN
    J Morphol; 2014 Dec; 275(12):1431-40. PubMed ID: 25139752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of avian wing shape and previously unrecognized trends in covert feathering.
    Wang X; Clarke JA
    Proc Biol Sci; 2015 Oct; 282(1816):20151935. PubMed ID: 26446812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens.
    Rashid DJ; Surya K; Chiappe LM; Carroll N; Garrett KL; Varghese B; Bailleul A; O'Connor JK; Chapman SC; Horner JR
    Sci Rep; 2018 Jun; 8(1):9014. PubMed ID: 29899503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Enantiornithine with a Fan-Shaped Tail, and the Evolution of the Rectricial Complex in Early Birds.
    O'Connor JK; Wang X; Zheng X; Hu H; Zhang X; Zhou Z
    Curr Biol; 2016 Jan; 26(1):114-9. PubMed ID: 26748849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postcranial skeletal pneumaticity in non-aquatic neoavians: Insights from accipitrimorphae.
    Gutherz SB; O'Connor PM
    J Anat; 2022 Dec; 241(6):1387-1398. PubMed ID: 35981708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forelimb skeletal morphology and flight mode evolution in pelecaniform birds.
    Simons EL
    Zoology (Jena); 2010 Jan; 113(1):39-46. PubMed ID: 20071157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.
    Feo TJ; Field DJ; Prum RO
    Proc Biol Sci; 2015 Mar; 282(1803):20142864. PubMed ID: 25673687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing locomotor ecology of extinct avialans: a case study of
    Lowi-Merri TM; Demuth OE; Benito J; Field DJ; Benson RBJ; Claramunt S; Evans DC
    Proc Biol Sci; 2023 Mar; 290(1994):20222020. PubMed ID: 36883281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui.
    Clarke JA; Zhou Z; Zhang F
    J Anat; 2006 Mar; 208(3):287-308. PubMed ID: 16533313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional constraints on the number and shape of flight feathers.
    Kiat Y; O'Connor JK
    Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2306639121. PubMed ID: 38346196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limits on the evolution of tail ornamentation in birds.
    Evans MR
    Am Nat; 2004 Mar; 163(3):341-57. PubMed ID: 15026972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.
    Allen V; Bates KT; Li Z; Hutchinson JR
    Nature; 2013 May; 497(7447):104-7. PubMed ID: 23615616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds.
    Simons EL; Hieronymus TL; O'Connor PM
    J Morphol; 2011 Aug; 272(8):958-71. PubMed ID: 21567447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle.
    Wang M; O'Connor JK; Pan Y; Zhou Z
    Nat Commun; 2017 Jan; 8():14141. PubMed ID: 28139644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Morphologic-functional study of the locomotor system of penguins as a general model of movement in under-water flight. I].
    Bannasch R
    Gegenbaurs Morphol Jahrb; 1986; 132(5):645-79. PubMed ID: 3803859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The skeleton flight apparatus of North American bluebirds (Sialia): phylogenetic thrushes or functional flycatchers?
    Corbin CE; Lowenberger LK; Dorkoski RP
    J Morphol; 2013 Aug; 274(8):909-17. PubMed ID: 23576285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FROM FROND TO FAN: ARCHAEOPTERYX AND THE EVOLUTION OF SHORT-TAILED BIRDS.
    Gatesy SM; Dial KP
    Evolution; 1996 Oct; 50(5):2037-2048. PubMed ID: 28565606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetics and ecomorphology of emarginate primary feathers.
    Klaassen van Oorschot B; Tang HK; Tobalske BW
    J Morphol; 2017 Jul; 278(7):936-947. PubMed ID: 28523646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.