These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24586998)

  • 21. Morphological variation of tail bone among two chicken breeds and their F
    Nyirimana P; Kondoh D; Tomiyasu J; Watanabe M; Okada Y; Nishida Y; Goto T
    J Morphol; 2024 May; 285(5):e21704. PubMed ID: 38702980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flightless birds are not neuroanatomical analogs of non-avian dinosaurs.
    Gold MEL; Watanabe A
    BMC Evol Biol; 2018 Dec; 18(1):190. PubMed ID: 30545287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.
    Clark CJ; Prum RO
    J Exp Biol; 2015 Nov; 218(Pt 21):3520-7. PubMed ID: 26385327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Body mass and foraging ecology predict evolutionary patterns of skeletal pneumaticity in the diverse "waterbird" clade.
    Smith ND
    Evolution; 2012 Apr; 66(4):1059-78. PubMed ID: 22486689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution.
    Hu D; Clarke JA; Eliason CM; Qiu R; Li Q; Shawkey MD; Zhao C; D'Alba L; Jiang J; Xu X
    Nat Commun; 2018 Jan; 9(1):217. PubMed ID: 29335537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers.
    Foth C; Tischlinger H; Rauhut OW
    Nature; 2014 Jul; 511(7507):79-82. PubMed ID: 24990749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anatomy and Flight Performance of the Early Enantiornithine Bird Protopteryx fengningensis: Information from New Specimens of the Early Cretaceous Huajiying Formation of China.
    Chiappe LM; Di L; Serrano FJ; Yuguang Z; Meng Q
    Anat Rec (Hoboken); 2020 Apr; 303(4):716-731. PubMed ID: 31825173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological innovation and biomechanical diversity in plunge-diving birds.
    Eliason CM; Straker L; Jung S; Hackett SJ
    Evolution; 2020 Jul; 74(7):1514-1524. PubMed ID: 32452015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving.
    Smith NA; Clarke JA
    PLoS One; 2012; 7(11):e49584. PubMed ID: 23209585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.
    Heers AM; Baier DB; Jackson BE; Dial KP
    PLoS One; 2016; 11(4):e0153446. PubMed ID: 27100994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nearly modern amphibious bird from the Early Cretaceous of northwestern China.
    You HL; Lamanna MC; Harris JD; Chiappe LM; O'connor J; Ji SA; Lü JC; Yuan CX; Li DQ; Zhang X; Lacovara KJ; Dodson P; Ji Q
    Science; 2006 Jun; 312(5780):1640-3. PubMed ID: 16778053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wing Shape in Waterbirds: Morphometric Patterns Associated with Behavior, Habitat, Migration, and Phylogenetic Convergence.
    Baumgart SL; Sereno PC; Westneat MW
    Integr Org Biol; 2021; 3(1):obab011. PubMed ID: 34381962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of wing loading on the trade-off between pursuit-diving and flight in common guillemots and razorbills.
    Thaxter CB; Wanless S; Daunt F; Harris MP; Benvenuti S; Watanuki Y; Grémillet D; Hamer KC
    J Exp Biol; 2010 Apr; 213(Pt 7):1018-25. PubMed ID: 20228337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Avian wing proportions and flight styles: first step towards predicting the flight modes of mesozoic birds.
    Wang X; McGowan AJ; Dyke GJ
    PLoS One; 2011; 6(12):e28672. PubMed ID: 22163324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Archaeopteryx feather sheaths reveal sequential center-out flight-related molting strategy.
    Kaye TG; Pittman M; Wahl WR
    Commun Biol; 2020 Dec; 3(1):745. PubMed ID: 33293660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Body mass and geographic distribution determined the evolution of the wing flight-feather molt strategy in the Neornithes lineage.
    Kiat Y; Slavenko A; Sapir N
    Sci Rep; 2021 Nov; 11(1):21573. PubMed ID: 34732791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poor flight performance in deep-diving cormorants.
    Watanabe YY; Takahashi A; Sato K; Viviant M; Bost CA
    J Exp Biol; 2011 Feb; 214(Pt 3):412-21. PubMed ID: 21228200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The primary feather lengths of early birds with respect to avian wing shape evolution.
    Wang X; Nudds RL; Dyke GJ
    J Evol Biol; 2011 Jun; 24(6):1226-31. PubMed ID: 21418115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repeated evolution of drag reduction at the air-water interface in diving kingfishers.
    Crandell KE; Howe RO; Falkingham PL
    J R Soc Interface; 2019 May; 16(154):20190125. PubMed ID: 31088257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.