BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24587123)

  • 1. Real-time measurements of the redox states of c-type cytochromes in electroactive biofilms: a confocal resonance Raman Microscopy study.
    Virdis B; Millo D; Donose BC; Batstone DJ
    PLoS One; 2014; 9(2):e89918. PubMed ID: 24587123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms.
    Lebedev N; Strycharz-Glaven SM; Tender LM
    Chemphyschem; 2014 Feb; 15(2):320-7. PubMed ID: 24402861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms.
    Golden J; Yates MD; Halsted M; Tender L
    Phys Chem Chem Phys; 2018 Oct; 20(40):25648-25656. PubMed ID: 30289415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells.
    Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven.
    Snider RM; Strycharz-Glaven SM; Tsoi SD; Erickson JS; Tender LM
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15467-72. PubMed ID: 22955881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-gradient driven electron transport in a mixed community anodic biofilm.
    Yates MD; Barr Engel S; Eddie BJ; Lebedev N; Malanoski AP; Tender LM
    FEMS Microbiol Ecol; 2018 Jun; 94(6):. PubMed ID: 29722806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes.
    Liu Y; Bond DR
    ChemSusChem; 2012 Jun; 5(6):1047-53. PubMed ID: 22577055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparity of Cytochrome Utilization in Anodic and Cathodic Extracellular Electron Transfer Pathways of
    Heidary N; Kornienko N; Kalathil S; Fang X; Ly KH; Greer HF; Reisner E
    J Am Chem Soc; 2020 Mar; 142(11):5194-5203. PubMed ID: 32066233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.
    Nevin KP; Kim BC; Glaven RH; Johnson JP; Woodard TL; Methé BA; Didonato RJ; Covalla SF; Franks AE; Liu A; Lovley DR
    PLoS One; 2009 May; 4(5):e5628. PubMed ID: 19461962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bidirectional microbial electron transfer: Switching an acetate oxidizing biofilm to nitrate reducing conditions.
    Pous N; Carmona-Martínez AA; Vilajeliu-Pons A; Fiset E; Bañeras L; Trably E; Balaguer MD; Colprim J; Bernet N; Puig S
    Biosens Bioelectron; 2016 Jan; 75():352-8. PubMed ID: 26339932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):641-6. PubMed ID: 21050727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro.
    Kakita M; Kaliaperumal V; Hamaguchi HO
    J Biophotonics; 2012 Jan; 5(1):20-4. PubMed ID: 22076935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the interfacial electron transfer dynamics of electroactive microbial biofilms using surface-enhanced Raman spectroscopy.
    Ly HK; Harnisch F; Hong SF; Schröder U; Hildebrandt P; Millo D
    ChemSusChem; 2013 Mar; 6(3):487-92. PubMed ID: 23371822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Approach for Evaluating Electron Transfer Dynamics by Using
    Krige A; Ramser K; Sjöblom M; Christakopoulos P; Rova U
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32826217
    [No Abstract]   [Full Text] [Related]  

  • 15. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer.
    Babauta JT; Nguyen HD; Harrington TD; Renslow R; Beyenal H
    Biotechnol Bioeng; 2012 Oct; 109(10):2651-62. PubMed ID: 22549331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodic step polarization accelerates electron recovery by electroactive biofilms (EABs).
    Gao Y; Xia L; Yao P; Lee HS
    Biotechnol Bioeng; 2023 Jun; 120(6):1545-1556. PubMed ID: 36782377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of the Surface-Exposed Cytochrome-Electrode Interactions in Electroactive Biofilms of Desulfuromonas acetoxidans.
    Alves A; Ly HK; Hildebrandt P; Louro RO; Millo D
    J Phys Chem B; 2015 Jun; 119(25):7968-74. PubMed ID: 26039558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the major pilA transcriptional regulator in electrochemical responses of Geobacter sulfureducens PilR-deficient mutant biofilm formed on FTO electrodes.
    Huerta-Miranda GA; Arroyo-Escoto AI; Burgos X; Juárez K; Miranda-Hernández M
    Bioelectrochemistry; 2019 Jun; 127():145-153. PubMed ID: 30825658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On electron transport through Geobacter biofilms.
    Bond DR; Strycharz-Glaven SM; Tender LM; Torres CI
    ChemSusChem; 2012 Jun; 5(6):1099-105. PubMed ID: 22615023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitations for current production in Geobacter sulfurreducens biofilms.
    Bonanni PS; Bradley DF; Schrott GD; Busalmen JP
    ChemSusChem; 2013 Apr; 6(4):711-20. PubMed ID: 23417889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.