These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 24587704)
21. Electrodeposited Sulfur and Co Zhan Y; Buffa A; Yu L; Xu ZJ; Mandler D Nanomicro Lett; 2020 Jul; 12(1):141. PubMed ID: 34138145 [TBL] [Abstract][Full Text] [Related]
22. Investigating the Electrocatalysis of a Ti Zhou HY; Sui ZY; Amin K; Lin LW; Wang HY; Han BH ACS Appl Mater Interfaces; 2020 Mar; 12(12):13904-13913. PubMed ID: 32108468 [TBL] [Abstract][Full Text] [Related]
23. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries. VahidMohammadi A; Hadjikhani A; Shahbazmohamadi S; Beidaghi M ACS Nano; 2017 Nov; 11(11):11135-11144. PubMed ID: 29039915 [TBL] [Abstract][Full Text] [Related]
24. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
25. An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries. Li Y; Bai Y; Bi X; Qian J; Ma L; Tian J; Wu C; Wu F; Lu J; Amine K ChemSusChem; 2016 Apr; 9(7):728-35. PubMed ID: 26940745 [TBL] [Abstract][Full Text] [Related]
26. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries. Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121 [TBL] [Abstract][Full Text] [Related]
27. Electrochemical behavior of alpha-MoO3 nanorods as cathode materials for rechargeable lithium batteries. Wen Z; Wang Q; Li J J Nanosci Nanotechnol; 2006 Jul; 6(7):2117-22. PubMed ID: 17025135 [TBL] [Abstract][Full Text] [Related]
28. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries. Zhang J; Cai Y; Zhong Q; Lai D; Yao J Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870 [TBL] [Abstract][Full Text] [Related]
29. Sustainable and Environmentally Friendly Na and Mg Aqueous Hybrid Batteries Using Na and K Birnessites. Gálvez F; Cabello M; Lavela P; Ortiz GF; Tirado JL Molecules; 2020 Feb; 25(4):. PubMed ID: 32093007 [TBL] [Abstract][Full Text] [Related]
30. Improvement of Energy Capacity with Vitamin C Treated Dual-Layered Graphene-Sulfur Cathodes in Lithium-Sulfur Batteries. Kim JW; Ocon JD; Kim HS; Lee J ChemSusChem; 2015 Sep; 8(17):2883-91. PubMed ID: 25925659 [TBL] [Abstract][Full Text] [Related]
31. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries. Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193 [TBL] [Abstract][Full Text] [Related]
32. Microwave-Assisted Synthesis of CuS Hierarchical Nanosheets as the Cathode Material for High-Capacity Rechargeable Magnesium Batteries. Wang Z; Rafai S; Qiao C; Jia J; Zhu Y; Ma X; Cao C ACS Appl Mater Interfaces; 2019 Feb; 11(7):7046-7054. PubMed ID: 30667214 [TBL] [Abstract][Full Text] [Related]
33. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Kang N; Lin Y; Yang L; Lu D; Xiao J; Qi Y; Cai M Nat Commun; 2019 Oct; 10(1):4597. PubMed ID: 31601812 [TBL] [Abstract][Full Text] [Related]
34. Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells. Hwa Y; Zhao J; Cairns EJ Nano Lett; 2015 May; 15(5):3479-86. PubMed ID: 25915431 [TBL] [Abstract][Full Text] [Related]
35. Vanadium oxychloride/magnesium electrode systems for chloride ion batteries. Gao P; Zhao X; Zhao-Karger Z; Diemant T; Behm RJ; Fichtner M ACS Appl Mater Interfaces; 2014 Dec; 6(24):22430-5. PubMed ID: 25419861 [TBL] [Abstract][Full Text] [Related]
37. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte. Sun XG; Wang X; Mayes RT; Dai S ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977 [TBL] [Abstract][Full Text] [Related]
38. Vanadium Pentoxide-Based Composite Synthesized Using Microwave Water Plasma for Cathode Material in Rechargeable Magnesium Batteries. Inamoto M; Kurihara H; Yajima T Materials (Basel); 2013 Oct; 6(10):4514-4522. PubMed ID: 28788344 [TBL] [Abstract][Full Text] [Related]
39. Facile Preparation of CuCo Zhang Q; Hu Y; Wang J; Dai Y; Pan F Chemistry; 2021 Sep; 27(54):13568-13574. PubMed ID: 33843077 [TBL] [Abstract][Full Text] [Related]
40. VOCl as a Cathode for Rechargeable Chloride Ion Batteries. Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]