These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24587716)

  • 1. Growth of ZnO nanorods on stainless steel wire using chemical vapour deposition and their photocatalytic activity.
    Abd Aziz SN; Pung SY; Ramli NN; Lockman Z
    ScientificWorldJournal; 2014; 2014():252851. PubMed ID: 24587716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability.
    Hsu MH; Chang CJ
    J Hazard Mater; 2014 Aug; 278():444-53. PubMed ID: 24997260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: Kinetics and reaction pathways.
    Shirzad-Siboni M; Jonidi-Jafari A; Farzadkia M; Esrafili A; Gholami M
    J Environ Manage; 2017 Jan; 186(Pt 1):1-11. PubMed ID: 27836562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application.
    Azam A; Babkair SS
    Int J Nanomedicine; 2014; 9():2109-15. PubMed ID: 24812511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Ag@Ag₃PO₄@ZnO ternary heterostructures for photocatalytic studies.
    Jin C; Liu G; Zu L; Qin Y; Yang J
    J Colloid Interface Sci; 2015 Sep; 453():36-41. PubMed ID: 25965430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of hierarchical core-shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications.
    Qin Y; Zhou Y; Li J; Ma J; Shi D; Chen J; Yang J
    J Colloid Interface Sci; 2014 Mar; 418():171-7. PubMed ID: 24461832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stainless steel wire mesh-supported ZnO for the catalytic photodegradation of methylene blue under ultraviolet irradiation.
    Vu TT; del Río L; Valdés-Solís T; Marbán G
    J Hazard Mater; 2013 Feb; 246-247():126-34. PubMed ID: 23291337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnO nanorods on in-situ synthesized ZnSe grains.
    Choy WC; Guo CF; Pang GK; Leung YP; Wang GZ; Cheah KW
    J Nanosci Nanotechnol; 2006 Mar; 6(3):802-6. PubMed ID: 16573141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods.
    Singh J; Juneja S; Palsaniya S; Manna AK; Soni RK; Bhattacharya J
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110541. PubMed ID: 31606700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts.
    Ahmad M; Ahmed E; Hong ZL; Ahmed W; Elhissi A; Khalid NR
    Ultrason Sonochem; 2014 Mar; 21(2):761-73. PubMed ID: 24055646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed-mediated growth of ZnO nanorods on multiwalled carbon nanotubes.
    Li C; Jin Z; Chu H; Li Y
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4441-6. PubMed ID: 19054874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge influence and growth mechanism of ZnO nanorods.
    Park SH; Han SW
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2909-12. PubMed ID: 17685316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties.
    Ghayempour S; Montazer M; Mahmoudi Rad M
    Carbohydr Polym; 2016 Jan; 136():232-41. PubMed ID: 26572351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Well-Aligned ZnO Nanorods with Different Reaction Times by Chemical Bath Deposition Method Applying for Photocatalysis Application.
    Wai HS; Li C
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge influence and growth mechanism of ZnO nanorods.
    Park SH; Han SW
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2526-9. PubMed ID: 17663276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and application of zinc-zinc oxide nanosheets coating on an etched stainless steel wire as a selective solid-phase microextraction fiber.
    Song W; Guo M; Zhang Y; Zhang M; Wang X; Du X
    J Chromatogr A; 2015 Mar; 1384():28-36. PubMed ID: 25662065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis.
    Rashid M; Ikram M; Haider A; Naz S; Haider J; Ul-Hamid A; Shahzadi A; Aqeel M
    Dalton Trans; 2020 Jun; 49(24):8314-8330. PubMed ID: 32515772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The study on the growth process of ZnO nanorods].
    Qi XQ; Tao DL; Huang Y; Ling C; Xu YZ; Wei F; Wu JG; Xu DF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Mar; 25(3):321-5. PubMed ID: 16013297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism.
    Mahana A; Mehta SK
    Environ Sci Pollut Res Int; 2021 Jun; 28(22):28234-28250. PubMed ID: 33533000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type-II ZnO nanorod-SnO2 nanoparticle heterostructures: characterization of structural, optical and photocatalytic properties.
    Huang X; Shang L; Chen S; Xia J; Qi X; Wang X; Zhang T; Meng XM
    Nanoscale; 2013 May; 5(9):3828-33. PubMed ID: 23519460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.