These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24587839)

  • 1. SPARSE INTEGRATIVE CLUSTERING OF MULTIPLE OMICS DATA SETS.
    Shen R; Wang S; Mo Q
    Ann Appl Stat; 2013 Apr; 7(1):269-294. PubMed ID: 24587839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.
    Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG
    Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data.
    Pierre-Jean M; Mauger F; Deleuze JF; Le Floch E
    Bioinformatics; 2022 Jan; 38(4):900-907. PubMed ID: 34849583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization.
    Kim S; Oesterreich S; Kim S; Park Y; Tseng GC
    Biostatistics; 2017 Jan; 18(1):165-179. PubMed ID: 27549122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis.
    Shen R; Olshen AB; Ladanyi M
    Bioinformatics; 2009 Nov; 25(22):2906-12. PubMed ID: 19759197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sparse PLS for variable selection when integrating omics data.
    Lê Cao KA; Rossouw D; Robert-Granié C; Besse P
    Stat Appl Genet Mol Biol; 2008; 7(1):Article 35. PubMed ID: 19049491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Randomized singular value decomposition for integrative subtype analysis of 'omics data' using non-negative matrix factorization.
    Ni Y; He J; Chalise P
    Stat Appl Genet Mol Biol; 2023 Jan; 22(1):. PubMed ID: 37937887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.
    Becker N; Toedt G; Lichter P; Benner A
    BMC Bioinformatics; 2011 May; 12():138. PubMed ID: 21554689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative eQTL analysis of tumor and host omics data in individuals with bladder cancer.
    Pineda S; Van Steen K; Malats N
    Genet Epidemiol; 2017 Sep; 41(6):567-573. PubMed ID: 28643332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint analysis of multiple high-dimensional data types using sparse matrix approximations of rank-1 with applications to ovarian and liver cancer.
    Okimoto G; Zeinalzadeh A; Wenska T; Loomis M; Nation JB; Fabre T; Tiirikainen M; Hernandez B; Chan O; Wong L; Kwee S
    BioData Min; 2016; 9():24. PubMed ID: 27478503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease.
    Xu C; Zhang JG; Lin D; Zhang L; Shen H; Deng HW
    G3 (Bethesda); 2017 Jul; 7(7):2271-2279. PubMed ID: 28500050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Joint Latent Variable Models and Integrative Tumor Subtype Discovery.
    Liu B; Shen X; Pan W
    Stat Anal Data Min; 2016 Apr; 9(2):106-116. PubMed ID: 29333206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimism Bias Correction in Omics Studies with Big Data: Assessment of Penalized Methods on Simulated Data.
    Zhao Y; Dantony E; Roy P
    OMICS; 2019 Apr; 23(4):207-213. PubMed ID: 30794050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Algorithm for Feature Selection Using Penalized Regression with Applications to Single-Cell RNA Sequencing Data.
    Sen Puliparambil B; Tomal JH; Yan Y
    Biology (Basel); 2022 Oct; 11(10):. PubMed ID: 36290397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penalized Regression and Risk Prediction in Genome-Wide Association Studies.
    Austin E; Pan W; Shen X
    Stat Anal Data Min; 2013 Aug; 6(4):. PubMed ID: 24348893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian framework for pathway-guided identification of cancer subgroups by integrating multiple types of genomic data.
    Sun Z; Chung D; Neelon B; Millar-Wilson A; Ethier SP; Xiao F; Zheng Y; Wallace K; Hardiman G
    Stat Med; 2023 Dec; 42(28):5266-5284. PubMed ID: 37715500
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.