BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24588399)

  • 1. Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide.
    Wiedman G; Fuselier T; He J; Searson PC; Hristova K; Wimley WC
    J Am Chem Soc; 2014 Mar; 136(12):4724-31. PubMed ID: 24588399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single channel planar lipid bilayer recordings of the melittin variant MelP5.
    Fennouri A; Mayer SF; Schroeder TBH; Mayer M
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):2051-2057. PubMed ID: 28720433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers.
    Pittman AE; Marsh BP; King GM
    Langmuir; 2018 Jul; 34(28):8393-8399. PubMed ID: 29933696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.
    Wiedman G; Wimley WC; Hristova K
    Biochim Biophys Acta; 2015 Apr; 1848(4):951-7. PubMed ID: 25572997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potent Macromolecule-Sized Poration of Lipid Bilayers by the Macrolittins, A Synthetically Evolved Family of Pore-Forming Peptides.
    Li S; Kim SY; Pittman AE; King GM; Wimley WC; Hristova K
    J Am Chem Soc; 2018 May; 140(20):6441-6447. PubMed ID: 29694775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation and insertion of melittin and its analogue MelP5 into lipid bilayers at different concentrations: effects on pore size, bilayer thickness and dynamics.
    Woo SY; Lee H
    Phys Chem Chem Phys; 2017 Mar; 19(10):7195-7203. PubMed ID: 28232995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores.
    Pino-Angeles A; Lazaridis T
    Biophys J; 2018 Jun; 114(12):2865-2874. PubMed ID: 29925023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores?
    Belluati A; Mikhalevich V; Yorulmaz Avsar S; Daubian D; Craciun I; Chami M; Meier WP; Palivan CG
    Biomacromolecules; 2020 Feb; 21(2):701-715. PubMed ID: 31855422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melittin creates transient pores in a lipid bilayer: results from computer simulations.
    Santo KP; Irudayam SJ; Berkowitz ML
    J Phys Chem B; 2013 May; 117(17):5031-42. PubMed ID: 23534858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores.
    Allende D; Simon SA; McIntosh TJ
    Biophys J; 2005 Mar; 88(3):1828-37. PubMed ID: 15596510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-assembled melittin: structural and functional characterization of a designed, synthetic channel-forming protein.
    Pawlak M; Meseth U; Dhanapal B; Mutter M; Vogel H
    Protein Sci; 1994 Oct; 3(10):1788-805. PubMed ID: 7531528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity.
    Kim SY; Bondar AN; Wimley WC; Hristova K
    Biophys J; 2021 Feb; 120(4):618-630. PubMed ID: 33460594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers.
    Smith R; Separovic F; Milne TJ; Whittaker A; Bennett FM; Cornell BA; Makriyannis A
    J Mol Biol; 1994 Aug; 241(3):456-66. PubMed ID: 8064858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What Makes a Good Pore Former: A Study of Synthetic Melittin Derivatives.
    Sepehri A; PeBenito L; Pino-Angeles A; Lazaridis T
    Biophys J; 2020 Apr; 118(8):1901-1913. PubMed ID: 32183940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-viscosimetry analysis of the membrane disrupting action of the bee venom peptide melittin.
    Pandidan S; Mechler A
    Sci Rep; 2019 Jul; 9(1):10841. PubMed ID: 31346251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening.
    Krauson AJ; He J; Wimley WC
    J Am Chem Soc; 2012 Aug; 134(30):12732-41. PubMed ID: 22731650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process of inducing pores in membranes by melittin.
    Lee MT; Sun TL; Hung WC; Huang HW
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14243-8. PubMed ID: 23940362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.
    Naito A; Nagao T; Norisada K; Mizuno T; Tuzi S; Saitô H
    Biophys J; 2000 May; 78(5):2405-17. PubMed ID: 10777736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.