BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24588399)

  • 21. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between Single-Molecule Dynamics and Biological Functions of Antimicrobial Peptide Melittin.
    Xu C; Ma W; Wang K; He K; Chen Z; Liu J; Yang K; Yuan B
    J Phys Chem Lett; 2020 Jun; 11(12):4834-4841. PubMed ID: 32478521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-Triggered, Macromolecule-Sized Poration of Lipid Bilayers by Synthetically Evolved Peptides.
    Wiedman G; Kim SY; Zapata-Mercado E; Wimley WC; Hristova K
    J Am Chem Soc; 2017 Jan; 139(2):937-945. PubMed ID: 28001058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Barrel-stave model or toroidal model? A case study on melittin pores.
    Yang L; Harroun TA; Weiss TM; Ding L; Huang HW
    Biophys J; 2001 Sep; 81(3):1475-85. PubMed ID: 11509361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The reduced-charge melittin analogue MelP5 improves the transfection of non-viral DNA nanoparticles.
    Delvaux NA; Rice KG
    J Pept Sci; 2022 Aug; 28(8):e3404. PubMed ID: 35001445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization.
    Wiedman G; Herman K; Searson P; Wimley WC; Hristova K
    Biochim Biophys Acta; 2013 May; 1828(5):1357-64. PubMed ID: 23384418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct observation of nanometer-scale pores of melittin in supported lipid monolayers.
    Giménez D; Sánchez-Muñoz OL; Salgado J
    Langmuir; 2015 Mar; 31(10):3146-58. PubMed ID: 25705986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melittin-induced cholesterol reorganization in lipid bilayer membranes.
    Qian S; Heller WT
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2253-60. PubMed ID: 26074009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organizations of melittin peptides after spontaneous penetration into cell membranes.
    Sun L; Wang S; Tian F; Zhu H; Dai L
    Biophys J; 2022 Nov; 121(22):4368-4381. PubMed ID: 36199252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding and reorientation of melittin in a POPC bilayer: computer simulations.
    Irudayam SJ; Berkowitz ML
    Biochim Biophys Acta; 2012 Dec; 1818(12):2975-81. PubMed ID: 22877705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determining the mechanism of membrane permeabilizing peptides: identification of potent, equilibrium pore-formers.
    Krauson AJ; He J; Wimley WC
    Biochim Biophys Acta; 2012 Jul; 1818(7):1625-32. PubMed ID: 22365969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural dynamics of a lytic peptide interacting with a supported lipid bilayer.
    Rapson AC; Hossain MA; Wade JD; Nice EC; Smith TA; Clayton AH; Gee ML
    Biophys J; 2011 Mar; 100(5):1353-61. PubMed ID: 21354409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melittin-lipid bilayer interactions and the role of cholesterol.
    Wessman P; Strömstedt AA; Malmsten M; Edwards K
    Biophys J; 2008 Nov; 95(9):4324-36. PubMed ID: 18658211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cause and effect of melittin-induced pore formation: a computational approach.
    Manna M; Mukhopadhyay C
    Langmuir; 2009 Oct; 25(20):12235-42. PubMed ID: 19754202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: results from coarse-grained simulations.
    Santo KP; Berkowitz ML
    J Phys Chem B; 2012 Mar; 116(9):3021-30. PubMed ID: 22303892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Determinants of Peptide Nanopore Formation.
    Sun L; Hristova K; Bondar AN; Wimley WC
    ACS Nano; 2024 Jun; 18(24):15831-15844. PubMed ID: 38844421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vesicle budding induced by a pore-forming peptide.
    Yu Y; Vroman JA; Bae SC; Granick S
    J Am Chem Soc; 2010 Jan; 132(1):195-201. PubMed ID: 20000420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A gigaseal obtained with a self-assembled long-lifetime lipid bilayer on a single polyelectrolyte multilayer-filled nanopore.
    Sugihara K; Vörös J; Zambelli T
    ACS Nano; 2010 Sep; 4(9):5047-54. PubMed ID: 20687537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers.
    Kim SY; Pittman AE; Zapata-Mercado E; King GM; Wimley WC; Hristova K
    J Am Chem Soc; 2019 Apr; 141(16):6706-6718. PubMed ID: 30916949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.