These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 24588890)

  • 1. New extremophilic lipases and esterases from metagenomics.
    López-López O; Cerdán ME; González Siso MI
    Curr Protein Pept Sci; 2014; 15(5):445-55. PubMed ID: 24588890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Archaeal lipolytic enzymes: Current developments and further prospects.
    Meghwanshi GK; Verma S; Srivastava V; Kumar R
    Biotechnol Adv; 2022 Dec; 61():108054. PubMed ID: 36307049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current perspectives for microbial lipases from extremophiles and metagenomics.
    Verma S; Meghwanshi GK; Kumar R
    Biochimie; 2021 Mar; 182():23-36. PubMed ID: 33421499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional-based screening methods for lipases, esterases, and phospholipases in metagenomic libraries.
    Reyes-Duarte D; Ferrer M; García-Arellano H
    Methods Mol Biol; 2012; 861():101-13. PubMed ID: 22426714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27.
    Fuciños P; González R; Atanes E; Sestelo AB; Pérez-Guerra N; Pastrana L; Rúa ML
    Methods Mol Biol; 2012; 861():239-66. PubMed ID: 22426723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold-adapted esterases and lipases: from fundamentals to application.
    Tutino ML; di Prisco G; Marino G; de Pascale D
    Protein Pept Lett; 2009; 16(10):1172-80. PubMed ID: 19508185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of lipolytic enzymes using high-throughput single-cell screening and sorting of a metagenomic library.
    Alma'abadi A; Behzad H; Alarawi M; Conchouso D; Saito Y; Hosokawa M; Nishikawa Y; Kogawa M; Takeyama H; Mineta K; Gojobori T
    N Biotechnol; 2022 Sep; 70():102-108. PubMed ID: 35636700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications.
    Rafeeq H; Hussain A; Shabbir S; Ali S; Bilal M; Sher F; Iqbal HMN
    Biotechnol Appl Biochem; 2022 Oct; 69(5):2176-2194. PubMed ID: 34699092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas lipases: molecular genetics and potential industrial applications.
    Soberón-Chávez G; Palmeros B
    Crit Rev Microbiol; 1994; 20(2):95-105. PubMed ID: 8080630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional-Based Screening Methods for Detecting Esterase and Lipase Activity Against Multiple Substrates.
    Reyes-Duarte D; Coscolín C; Martínez-Martínez M; Ferrer M; García-Arellano H
    Methods Mol Biol; 2018; 1835():109-117. PubMed ID: 30109647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis?
    Almeida JM; Alnoch RC; Souza EM; Mitchell DA; Krieger N
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140320. PubMed ID: 31756433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories.
    Nacke H; Will C; Herzog S; Nowka B; Engelhaupt M; Daniel R
    FEMS Microbiol Ecol; 2011 Oct; 78(1):188-201. PubMed ID: 21395625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial lipolytic fusion enzymes: current state and future perspectives.
    Gudiukaite R; Gricajeva A
    World J Microbiol Biotechnol; 2017 Nov; 33(12):216. PubMed ID: 29181632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.
    Ribera J; Estupiñán M; Fuentes A; Fillat A; Martínez J; Diaz P
    PLoS One; 2017; 12(7):e0181029. PubMed ID: 28742841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Est16, a New Esterase Isolated from a Metagenomic Library of a Microbial Consortium Specializing in Diesel Oil Degradation.
    Pereira MR; Mercaldi GF; Maester TC; Balan A; Lemos EG
    PLoS One; 2015; 10(7):e0133723. PubMed ID: 26214846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.
    Borrelli GM; Trono D
    Int J Mol Sci; 2015 Sep; 16(9):20774-840. PubMed ID: 26340621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases.
    Chahinian H; Sarda L
    Protein Pept Lett; 2009; 16(10):1149-61. PubMed ID: 19508178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.
    Privé F; Newbold CJ; Kaderbhai NN; Girdwood SG; Golyshina OV; Golyshin PN; Scollan ND; Huws SA
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5475-85. PubMed ID: 25575887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two novel deep-sea sediment metagenome-derived esterases: residue 199 is the determinant of substrate specificity and preference.
    Huo YY; Jian SL; Cheng H; Rong Z; Cui HL; Xu XW
    Microb Cell Fact; 2018 Jan; 17(1):16. PubMed ID: 29382330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do lipases and esterases work: the electrostatic contribution.
    Neves Petersen MT; Fojan P; Petersen SB
    J Biotechnol; 2001 Feb; 85(2):115-47. PubMed ID: 11165360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.