These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24589377)

  • 41. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae.
    Derkatch IL; Bradley ME; Zhou P; Chernoff YO; Liebman SW
    Genetics; 1997 Oct; 147(2):507-19. PubMed ID: 9335589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sporadic distribution of prion-forming ability of Sup35p from yeasts and fungi.
    Edskes HK; Khamar HJ; Winchester CL; Greenler AJ; Zhou A; McGlinchey RP; Gorkovskiy A; Wickner RB
    Genetics; 2014 Oct; 198(2):605-16. PubMed ID: 25081567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton.
    Chernova TA; Romanyuk AV; Karpova TS; Shanks JR; Ali M; Moffatt N; Howie RL; O'Dell A; McNally JG; Liebman SW; Chernoff YO; Wilkinson KD
    Mol Cell; 2011 Jul; 43(2):242-52. PubMed ID: 21777813
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prion properties of the Sup35 protein of yeast Pichia methanolica.
    Kushnirov VV; Kochneva-Pervukhova NV; Chechenova MB; Frolova NS; Ter-Avanesyan MD
    EMBO J; 2000 Feb; 19(3):324-31. PubMed ID: 10654931
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI(+)] of Saccharomyces cerevisiae.
    Eaglestone SS; Ruddock LW; Cox BS; Tuite MF
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):240-4. PubMed ID: 10618402
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association.
    Chernova TA; Yang Z; Karpova TS; Shanks JR; Shcherbik N; Wilkinson KD; Chernoff YO
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708832
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils.
    Kabani M; Melki R
    Biochem Biophys Res Commun; 2020 Aug; 529(3):533-539. PubMed ID: 32736670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [New aspects of research upon the yeast Saccharomyces cerevisiae [PSI+] prion].
    Ishikawa T
    Postepy Biochem; 2007; 53(2):182-7. PubMed ID: 17969880
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The physical dimensions of amyloid aggregates control their infective potential as prion particles.
    Marchante R; Beal DM; Koloteva-Levine N; Purton TJ; Tuite MF; Xue WF
    Elife; 2017 Sep; 6():. PubMed ID: 28880146
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sup35p yeast prion-like protein as an adapter for production of the Gag-p55 antigen of HIV-1 and the L-chain of botulinum neurotoxin in Saccharomyces cerevisiae.
    Ivanov PA; Lewitin EI; Shevelev BI; Fominov GV; Wojciechowska JA; Asadi Mobarhan AH; Vertie YV; Yankovsky NK; Shevelev AB
    Res Microbiol; 2001; 152(1):27-35. PubMed ID: 11281322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion.
    Ali M; Chernova TA; Newnam GP; Yin L; Shanks J; Karpova TS; Lee A; Laur O; Subramanian S; Kim D; McNally JG; Seyfried NT; Chernoff YO; Wilkinson KD
    J Biol Chem; 2014 Oct; 289(40):27625-39. PubMed ID: 25143386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions.
    Kimura Y; Koitabashi S; Kakizuka A; Fujita T
    Genes Cells; 2004 Aug; 9(8):685-96. PubMed ID: 15298677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [PSI+] Prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies 'species barriers'.
    Bateman DA; Wickner RB
    Genetics; 2012 Feb; 190(2):569-79. PubMed ID: 22095075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conversion of a yeast prion protein to an infectious form in bacteria.
    Garrity SJ; Sivanathan V; Dong J; Lindquist S; Hochschild A
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10596-601. PubMed ID: 20484678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of conformational flexibility in prion propagation and maintenance for Sup35p.
    Scheibel T; Lindquist SL
    Nat Struct Biol; 2001 Nov; 8(11):958-62. PubMed ID: 11685242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+].
    Liu JJ; Sondheimer N; Lindquist SL
    Proc Natl Acad Sci U S A; 2002 Dec; 99 Suppl 4(Suppl 4):16446-53. PubMed ID: 12461168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro propagation of the prion-like state of yeast Sup35 protein.
    Paushkin SV; Kushnirov VV; Smirnov VN; Ter-Avanesyan MD
    Science; 1997 Jul; 277(5324):381-3. PubMed ID: 9219697
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An antiprion effect of the anticytoskeletal drug latrunculin A in yeast.
    Bailleul-Winslett PA; Newnam GP; Wegrzyn RD; Chernoff YO
    Gene Expr; 2000; 9(3):145-56. PubMed ID: 11243411
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion.
    DePace AH; Santoso A; Hillner P; Weissman JS
    Cell; 1998 Jun; 93(7):1241-52. PubMed ID: 9657156
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Implications of the Actin Cytoskeleton on the Multi-Step Process of [
    Dorweiler JE; Lyke DR; Lemoine NP; Guereca S; Buchholz HE; Legan ER; Radtke CM; Manogaran AL
    Viruses; 2022 Jul; 14(7):. PubMed ID: 35891561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.