BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24589423)

  • 1. Control of groundwater pH during bioremediation: improvement and validation of a geochemical model to assess the buffering potential of ground silicate minerals.
    Lacroix E; Brovelli A; Holliger C; Barry DA
    J Contam Hydrol; 2014 May; 160():21-9. PubMed ID: 24589423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of silicate minerals for pH control during reductive dechlorination of chloroethenes in batch cultures of different microbial consortia.
    Lacroix E; Brovelli A; Barry DA; Holliger C
    Appl Environ Microbiol; 2014 Jul; 80(13):3858-67. PubMed ID: 24747895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of silicate minerals for long-term pH control during reductive dechlorination of high tetrachloroethene concentrations in continuous flow-through columns.
    Lacroix E; Brovelli A; Maillard J; Rohrbach-Brandt E; Barry DA; Holliger C
    Sci Total Environ; 2014 Jun; 482-483():23-35. PubMed ID: 24636885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.
    Arcos D; Grandia F; Domènech C; Fernández AM; Villar MV; Muurinen A; Carlsson T; Sellin P; Hernán P
    J Contam Hydrol; 2008 Dec; 102(3-4):196-209. PubMed ID: 18992963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH control for enhanced reductive bioremediation of chlorinated solvent source zones.
    Robinson C; Barry DA; McCarty PL; Gerhard JI; Kouznetsova I
    Sci Total Environ; 2009 Aug; 407(16):4560-73. PubMed ID: 19464727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms.
    Alam MS; Cheng T
    J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical impacts to groundwater from geologic carbon sequestration: controls on pH and inorganic carbon concentrations from reaction path and kinetic modeling.
    Wilkin RT; Digiulio DC
    Environ Sci Technol; 2010 Jun; 44(12):4821-7. PubMed ID: 20469895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
    Sharma P; Kappler A
    J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.
    Yang C; Dai Z; Romanak KD; Hovorka SD; Treviño RH
    Environ Sci Technol; 2014; 48(5):2798-806. PubMed ID: 24494823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicate mineral dissolution during heap bioleaching.
    Dopson M; Halinen AK; Rahunen N; Boström D; Sundkvist JE; Riekkola-Vanhanen M; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2008 Mar; 99(4):811-20. PubMed ID: 17705245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.
    Li L; Steefel CI; Kowalsky MB; Englert A; Hubbard SS
    J Contam Hydrol; 2010 Mar; 112(1-4):45-63. PubMed ID: 20036028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential impacts of CO2 leakage on groundwater chemistry from laboratory batch experiments and field push-pull tests.
    Mickler PJ; Yang C; Scanlon BR; Reedy R; Lu J
    Environ Sci Technol; 2013 Sep; 47(18):10694-702. PubMed ID: 23937146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production.
    Bonte M; van Breukelen BM; Stuyfzand PJ
    Water Res; 2013 Sep; 47(14):5088-100. PubMed ID: 23870436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale modeling of reactive solute transport in fracture zones of granitic bedrocks.
    Molinero J; Samper J
    J Contam Hydrol; 2006 Jan; 82(3-4):293-318. PubMed ID: 16337025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics of siderophore-mediated olivine dissolution.
    Torres MA; Dong S; Nealson KH; West AJ
    Geobiology; 2019 Jul; 17(4):401-416. PubMed ID: 30734464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling mineral phase change chemistry of groundwater in a rural-urban fringe.
    Singh SK; Srivastava PK; Gupta M; Mukherjee S
    Water Sci Technol; 2012; 66(7):1502-10. PubMed ID: 22864437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.
    Islam AB; Maity JP; Bundschuh J; Chen CY; Bhowmik BK; Tazaki K
    J Hazard Mater; 2013 Nov; 262():989-96. PubMed ID: 22954601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.
    Wu Y; Wang Y
    Environ Sci Process Impacts; 2014 May; 16(6):1469-79. PubMed ID: 24737419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.