These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24589451)
1. Embryonic oxygen enhances learning ability in hatchling lizards. Sun BJ; Wang TT; Pike DA; Liang L; Du WG Front Zool; 2014 Mar; 11(1):21. PubMed ID: 24589451 [TBL] [Abstract][Full Text] [Related]
2. Incubation under climate warming affects learning ability and survival in hatchling lizards. Dayananda B; Webb JK Biol Lett; 2017 Mar; 13(3):. PubMed ID: 28298595 [TBL] [Abstract][Full Text] [Related]
3. Population origin, maternal effects, and hydric conditions during incubation determine embryonic and offspring survival in a desert-dwelling lizard. Wang Y; Li SR; Pei MY; Wu DY; Du WG Oecologia; 2021 Jun; 196(2):341-352. PubMed ID: 33966105 [TBL] [Abstract][Full Text] [Related]
4. Embryonic and post-embryonic responses to high-elevation hypoxia in a low-elevation lizard. Li X; Wu P; Ma L; Huebner C; Sun B; Li S Integr Zool; 2020 Jul; 15(4):338-348. PubMed ID: 32297704 [TBL] [Abstract][Full Text] [Related]
5. Influence of incubation temperature on hatching success, energy expenditure for embryonic development, and size and morphology of hatchlings in the oriental garden lizard, Calotes versicolor (Agamidae). Ji X; Qiu QB; Diong CH J Exp Zool; 2002 Jun; 292(7):649-59. PubMed ID: 12115930 [TBL] [Abstract][Full Text] [Related]
6. Effect of incubation temperature and substrate moisture on embryonic development, hatchling phenotypes and post-hatching growth in the Reeves' Turtle, Wei Y; Gao Y; Cao D; Ge Y; Shi H; Gong S PeerJ; 2021; 9():e10553. PubMed ID: 33614259 [TBL] [Abstract][Full Text] [Related]
7. The effects of thermal and hydric environments on hatching success, embryonic use of energy and hatchling traits in a colubrid snake, Elaphe carinata. Ji X; Du WG Comp Biochem Physiol A Mol Integr Physiol; 2001 Jun; 129(2-3):461-71. PubMed ID: 11423316 [TBL] [Abstract][Full Text] [Related]
8. The influence of hydric environments during egg incubation on embryonic heart rates and offspring phenotypes in a scincid lizard (Lampropholis guichenoti). Du WG; Shine R Comp Biochem Physiol A Mol Integr Physiol; 2008 Sep; 151(1):102-7. PubMed ID: 18593603 [TBL] [Abstract][Full Text] [Related]
9. The impact of extended preovipositional arrest on embryonic development and hatchling fitness in the flatback sea turtle. Rings CC; Rafferty AR; Guinea ML; Reina RD Physiol Biochem Zool; 2015; 88(2):116-27. PubMed ID: 25730267 [TBL] [Abstract][Full Text] [Related]
10. Effects of incubation temperatures on learning abilities of hatchling velvet geckos. Abayarathna T; Webb JK Anim Cogn; 2020 Jul; 23(4):613-620. PubMed ID: 32130559 [TBL] [Abstract][Full Text] [Related]
11. Effects of constant and fluctuating temperatures on egg survival and hatchling traits in the northern grass lizard (Takydromus septentrionalis, Lacertidae). Du WG; Ji X J Exp Zool A Comp Exp Biol; 2006 Jan; 305(1):47-54. PubMed ID: 16358269 [TBL] [Abstract][Full Text] [Related]
12. Phenotypic consequences of maternally selected nests: a cross-fostering experiment in a desert lizard. Li S; Hao X; Sun B; Bi J; Zhang Y; DU W Integr Zool; 2021 Sep; 16(5):741-754. PubMed ID: 33190392 [TBL] [Abstract][Full Text] [Related]
13. A reciprocal egg-swap experiment reveals sources of variation in developmental success among populations of a desert lizard. Hao X; Wang CX; Han XZ; Wang Y; Zhang Q; Zhang FS; Sun BJ; Du WG Oecologia; 2021 May; 196(1):27-35. PubMed ID: 33825007 [TBL] [Abstract][Full Text] [Related]
14. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard. Dayananda B; Gray S; Pike D; Webb JK Glob Chang Biol; 2016 Jul; 22(7):2405-14. PubMed ID: 26940852 [TBL] [Abstract][Full Text] [Related]
15. Effects of postovipositional hypoxia and hyperoxia on leatherback turtle reproductive success and hatchling performance. Williamson SA; Hoover AL; Evans RG; Shillinger GL; Bailey H; Bruno RS; Bandimere A; Reina RD J Exp Zool A Ecol Integr Physiol; 2023 Dec; 339(10):939-950. PubMed ID: 37545193 [TBL] [Abstract][Full Text] [Related]
16. The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard. Warner DA; Shine R Evolution; 2005 Oct; 59(10):2209-21. PubMed ID: 16405164 [TBL] [Abstract][Full Text] [Related]
17. Influence of incubation temperature on morphology, locomotor performance, and early growth of hatchling wall lizards (Podarcis muralis). Braña F; Ji X J Exp Zool; 2000 Mar; 286(4):422-33. PubMed ID: 10684565 [TBL] [Abstract][Full Text] [Related]
18. Sex of incubation neighbours influences hatchling sexual phenotypes in an oviparous lizard. Braña F Oecologia; 2008 May; 156(2):275-80. PubMed ID: 18305963 [TBL] [Abstract][Full Text] [Related]
19. How incubation temperature influences the physiology and growth of embryonic lizards. Booth DT; Thompson MB; Herring S J Comp Physiol B; 2000 Jun; 170(4):269-76. PubMed ID: 10935517 [TBL] [Abstract][Full Text] [Related]
20. Incubation temperature and phenotypic traits of Sceloporus undulatus: implications for the northern limits of distribution. Parker SL; Andrews RM Oecologia; 2007 Mar; 151(2):218-31. PubMed ID: 17102996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]