BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24589662)

  • 1. Modelling the yeast interactome.
    Janjić V; Sharan R; Pržulj N
    Sci Rep; 2014 Mar; 4():4273. PubMed ID: 24589662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prior knowledge based mining functional modules from Yeast PPI networks with gene ontology.
    Jing L; Ng MK
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S3. PubMed ID: 21172053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of core-attachment complexes based on maximal frequent patterns in protein-protein interaction networks.
    Yu L; Gao L; Kong C
    Proteomics; 2011 Oct; 11(19):3826-34. PubMed ID: 21761565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
    Cho YR; Zhang A
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S3. PubMed ID: 20438650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B; Luo J; Liang C; Wang S; Song D
    Comput Biol Chem; 2015 Oct; 58():173-81. PubMed ID: 26298638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network simulation reveals significant contribution of network motifs to the age-dependency of yeast protein-protein interaction networks.
    Liang C; Luo J; Song D
    Mol Biosyst; 2014 Jul; 10(9):2277-88. PubMed ID: 24964354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Functional Modules Based on a Multiple-Grain Model in Large-Scale Protein-Protein Interaction Networks.
    Ji J; Lv J; Yang C; Zhang A
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):610-22. PubMed ID: 26394434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Algorithm Based on Link Label Propagation for Identifying Functional Modules From Protein-Protein Interaction Networks.
    Jiang H; Zhan F; Wang C; Qiu J; Su Y; Zheng C; Zhang X; Zeng X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1435-1448. PubMed ID: 33211663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-element: a new clustering algorithm to find high quality functional modules in PPI networks.
    Ghasemi M; Rahgozar M; Bidkhori G; Masoudi-Nejad A
    PLoS One; 2013; 8(9):e72366. PubMed ID: 24039752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS; Huang SH; Luo YC; Lin CY; Yang JM
    PLoS One; 2015; 10(1):e0116347. PubMed ID: 25602759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAE-FMD: multi-agent evolutionary method for functional module detection in protein-protein interaction networks.
    Ji JZ; Jiao L; Yang CC; Lv JW; Zhang AD
    BMC Bioinformatics; 2014 Sep; 15(1):325. PubMed ID: 25265982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding the "dark matter" in human and yeast protein network prediction and modelling.
    Ranea JA; Morilla I; Lees JG; Reid AJ; Yeats C; Clegg AB; Sanchez-Jimenez F; Orengo C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20885791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From hub proteins to hub modules: the relationship between essentiality and centrality in the yeast interactome at different scales of organization.
    Song J; Singh M
    PLoS Comput Biol; 2013; 9(2):e1002910. PubMed ID: 23436988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why do essential proteins tend to be clustered in the yeast interactome network?
    Lu C; Hu X; Wang G; Leach LJ; Yang S; Kearsey MJ; Luo ZW
    Mol Biosyst; 2010 May; 6(5):871-7. PubMed ID: 20567773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AdaPPI: identification of novel protein functional modules via adaptive graph convolution networks in a protein-protein interaction network.
    Chen H; Cai Y; Ji C; Selvaraj G; Wei D; Wu H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36526282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting topological properties and models of protein-protein interaction networks from the perspective of dataset evolution.
    Shao M; Zhou S; Guan J
    IET Syst Biol; 2015 Aug; 9(4):113-9. PubMed ID: 26243826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for dynamically organized modularity in the yeast protein-protein interaction network.
    Han JD; Bertin N; Hao T; Goldberg DS; Berriz GF; Zhang LV; Dupuy D; Walhout AJ; Cusick ME; Roth FP; Vidal M
    Nature; 2004 Jul; 430(6995):88-93. PubMed ID: 15190252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-dependent evolution of the yeast protein interaction network suggests a limited role of gene duplication and divergence.
    Kim WK; Marcotte EM
    PLoS Comput Biol; 2008 Nov; 4(11):e1000232. PubMed ID: 19043579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.