These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 24589761)
1. How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport. Jensen LM; Halkier BA; Burow M Biol Chem; 2014 May; 395(5):529-43. PubMed ID: 24589761 [TBL] [Abstract][Full Text] [Related]
2. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Gigolashvili T; Yatusevich R; Berger B; Müller C; Flügge UI Plant J; 2007 Jul; 51(2):247-61. PubMed ID: 17521412 [TBL] [Abstract][Full Text] [Related]
3. Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis. Albinsky D; Sawada Y; Kuwahara A; Nagano M; Hirai A; Saito K; Hirai MY Amino Acids; 2010 Oct; 39(4):1067-75. PubMed ID: 20623150 [TBL] [Abstract][Full Text] [Related]
4. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. Sønderby IE; Hansen BG; Bjarnholt N; Ticconi C; Halkier BA; Kliebenstein DJ PLoS One; 2007 Dec; 2(12):e1322. PubMed ID: 18094747 [TBL] [Abstract][Full Text] [Related]
5. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358 [TBL] [Abstract][Full Text] [Related]
6. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Pfalz M; Vogel H; Kroymann J Plant Cell; 2009 Mar; 21(3):985-99. PubMed ID: 19293369 [TBL] [Abstract][Full Text] [Related]
7. Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Kliebenstein DJ; D'Auria JC; Behere AS; Kim JH; Gunderson KL; Breen JN; Lee G; Gershenzon J; Last RL; Jander G Plant J; 2007 Sep; 51(6):1062-76. PubMed ID: 17651367 [TBL] [Abstract][Full Text] [Related]
8. Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis. Li J; Kristiansen KA; Hansen BG; Halkier BA J Exp Bot; 2011 Jan; 62(3):1337-46. PubMed ID: 21078824 [TBL] [Abstract][Full Text] [Related]
10. Glucosinolate biosynthetic genes in Brassica rapa. Wang H; Wu J; Sun S; Liu B; Cheng F; Sun R; Wang X Gene; 2011 Nov; 487(2):135-42. PubMed ID: 21835231 [TBL] [Abstract][Full Text] [Related]
11. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Kliebenstein DJ; Gershenzon J; Mitchell-Olds T Genetics; 2001 Sep; 159(1):359-70. PubMed ID: 11560911 [TBL] [Abstract][Full Text] [Related]
12. Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Li Y; Sawada Y; Hirai A; Sato M; Kuwahara A; Yan X; Hirai MY Plant Cell Physiol; 2013 Aug; 54(8):1335-44. PubMed ID: 23792303 [TBL] [Abstract][Full Text] [Related]
13. Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype. Heidel AJ; Clauss MJ; Kroymann J; Savolainen O; Mitchell-Olds T Genetics; 2006 Jul; 173(3):1629-36. PubMed ID: 16702431 [TBL] [Abstract][Full Text] [Related]
14. Engineering of glucosinolate biosynthesis: candidate gene identification and validation. Møldrup ME; Salomonsen B; Halkier BA Methods Enzymol; 2012; 515():291-313. PubMed ID: 22999179 [TBL] [Abstract][Full Text] [Related]
15. The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Gigolashvili T; Yatusevich R; Rollwitz I; Humphry M; Gershenzon J; Flügge UI Plant Cell; 2009 Jun; 21(6):1813-29. PubMed ID: 19542295 [TBL] [Abstract][Full Text] [Related]
16. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. Gigolashvili T; Engqvist M; Yatusevich R; Müller C; Flügge UI New Phytol; 2008; 177(3):627-642. PubMed ID: 18042203 [TBL] [Abstract][Full Text] [Related]
17. Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates. Nintemann SJ; Hunziker P; Andersen TG; Schulz A; Burow M; Halkier BA Physiol Plant; 2018 Jun; 163(2):138-154. PubMed ID: 29194649 [TBL] [Abstract][Full Text] [Related]
18. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Yatusevich R; Mugford SG; Matthewman C; Gigolashvili T; Frerigmann H; Delaney S; Koprivova A; Flügge UI; Kopriva S Plant J; 2010 Apr; 62(1):1-11. PubMed ID: 20042022 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Kusnierczyk A; Winge P; Midelfart H; Armbruster WS; Rossiter JT; Bones AM J Exp Bot; 2007; 58(10):2537-52. PubMed ID: 17545220 [TBL] [Abstract][Full Text] [Related]
20. Proteomics and metabolomics of Arabidopsis responses to perturbation of glucosinolate biosynthesis. Chen YZ; Pang QY; He Y; Zhu N; Branstrom I; Yan XF; Chen S Mol Plant; 2012 Sep; 5(5):1138-50. PubMed ID: 22498773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]