These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24589831)

  • 1. Support of academic synthetic chemistry using separation technologies from the pharmaceutical industry.
    Regalado EL; Kozlowski MC; Curto JM; Ritter T; Campbell MG; Mazzotti AR; Hamper BC; Spilling CD; Mannino MP; Wan L; Yu JQ; Liu J; Welch CJ
    Org Biomol Chem; 2014 Apr; 12(14):2161-6. PubMed ID: 24589831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation processes for organic molecules using SCF Technologies.
    Daintree LS; Kordikowski A; York P
    Adv Drug Deliv Rev; 2008 Feb; 60(3):351-72. PubMed ID: 18006179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of chemical reaction intermediates by metal-organic frameworks.
    Centrone A; Santiso EE; Hatton TA
    Small; 2011 Aug; 7(16):2356-64. PubMed ID: 21626684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis.
    Hartman RL; McMullen JP; Jensen KF
    Angew Chem Int Ed Engl; 2011 Aug; 50(33):7502-19. PubMed ID: 21710673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating optimal time for fast chromatographic separations.
    Welch CJ; Regalado EL
    J Sep Sci; 2014 Sep; 37(18):2552-8. PubMed ID: 24995384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of flash supercritical fluid chromatography and alternate sample loading techniques for pharmaceutical medicinal chemistry purifications.
    Miller L; Mahoney M
    J Chromatogr A; 2012 Aug; 1250():264-73. PubMed ID: 22771260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical fluid chromatography and steady-state recycling: phase appropriate technologies for the resolutions of pharmaceutical intermediates in the early drug development stage.
    Yan TQ; Orihuela C; Preston JP; Xia F
    Chirality; 2010 Nov; 22(10):922-8. PubMed ID: 20872668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Placing supercritical fluid chromatography one step ahead of reversed-phase high performance liquid chromatography in the achiral purification arena: a hydrophilic interaction chromatography cross-linked diol chemistry as a new generic stationary phase.
    de la Puente ML; Soto-Yarritu PL; Anta C
    J Chromatogr A; 2012 Aug; 1250():172-81. PubMed ID: 22494643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective chromatography in drug discovery.
    Zhang Y; Wu DR; Wang-Iverson DB; Tymiak AA
    Drug Discov Today; 2005 Apr; 10(8):571-7. PubMed ID: 15837600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmaceutical process chemistry: evolution of a contemporary data-rich laboratory environment.
    Caron S; Thomson NM
    J Org Chem; 2015 Mar; 80(6):2943-58. PubMed ID: 25635809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicomponent reactions in solid-phase synthesis.
    Banfi L; Guanti G; Riva R; Basso A
    Curr Opin Drug Discov Devel; 2007 Nov; 10(6):704-14. PubMed ID: 17987522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic solvents in the pharmaceutical industry.
    Grodowska K; Parczewski A
    Acta Pol Pharm; 2010; 67(1):3-12. PubMed ID: 20210074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatographic resolution of closely related species: separation of warfarin and hydroxylated isomers.
    Regalado EL; Schafer W; McClain R; Welch CJ
    J Chromatogr A; 2013 Nov; 1314():266-75. PubMed ID: 24055230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transfer catalysis in pharmaceutical industry--where are we?
    Fedoryński M; Jezierska-Zieba M; Kakol B
    Acta Pol Pharm; 2008; 65(6):647-54. PubMed ID: 19172846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical fluid chromatography for the enantioseparation of pharmaceuticals.
    De Klerck K; Mangelings D; Vander Heyden Y
    J Pharm Biomed Anal; 2012 Oct; 69():77-92. PubMed ID: 22366324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and high throughput separation technologies--steady state recycling and supercritical fluid chromatography for chiral resolution of pharmaceutical intermediates.
    Yan TQ; Orihuela C
    J Chromatogr A; 2007 Jul; 1156(1-2):220-7. PubMed ID: 17449051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and biochemical variation in animal manure solids separated using different commercial separation technologies.
    Jørgensen K; Jensen LS
    Bioresour Technol; 2009 Jun; 100(12):3088-96. PubMed ID: 19272772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compounds for expanding the descriptor space for characterizing separation systems.
    Karunasekara T; Poole CF
    J Chromatogr A; 2012 Nov; 1266():124-30. PubMed ID: 23089515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monosubstituted positively charged cyclodextrins: Synthesis and applications in chiral separation.
    Tang W; Ng SC
    J Sep Sci; 2008 Oct; 31(18):3246-56. PubMed ID: 18763252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic synthesis: The robo-chemist.
    Peplow M
    Nature; 2014 Aug; 512(7512):20-2. PubMed ID: 25100466
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.