BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24589876)

  • 1. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis.
    Fu CY; Tseng SY; Yang SM; Hsu L; Liu CH; Chang HY
    Biofabrication; 2014 Mar; 6(1):015009. PubMed ID: 24589876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.
    Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M
    Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orderly arrangement of hepatocyte spheroids on a microfabricated chip.
    Fukuda J; Nakazawa K
    Tissue Eng; 2005; 11(7-8):1254-62. PubMed ID: 16144461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids.
    McMillan KS; Boyd M; Zagnoni M
    Lab Chip; 2016 Sep; 16(18):3548-57. PubMed ID: 27477673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip.
    Torisawa YS; Takagi A; Nashimoto Y; Yasukawa T; Shiku H; Matsue T
    Biomaterials; 2007 Jan; 28(3):559-66. PubMed ID: 16989897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery.
    Wu LY; Di Carlo D; Lee LP
    Biomed Microdevices; 2008 Apr; 10(2):197-202. PubMed ID: 17965938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device.
    Okuyama T; Yamazoe H; Mochizuki N; Khademhosseini A; Suzuki H; Fukuda J
    J Biosci Bioeng; 2010 Nov; 110(5):572-6. PubMed ID: 20591731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform.
    Hu K; Zhou N; Li Y; Ma S; Guo Z; Cao M; Zhang Q; Sun J; Zhang T; Gu N
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15113-9. PubMed ID: 27258682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.
    Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ
    Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel.
    Hu G; Li D
    Biomed Microdevices; 2007 Jun; 9(3):315-23. PubMed ID: 17203380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Hepatic Tissue Structures Using Multicellular Spheroid Culture.
    Tao F; Mihara H; Kojima N
    Methods Mol Biol; 2019; 1905():157-165. PubMed ID: 30536098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids.
    Zhao Z; Gu J; Zhao Y; Guan Y; Zhu XX; Zhang Y
    Biomacromolecules; 2014 Sep; 15(9):3306-12. PubMed ID: 25072634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bioprinted Liver-on-a-Chip for Drug Screening Applications.
    Knowlton S; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):681-682. PubMed ID: 27291461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review.
    Kim S; Lam PY; Jayaraman A; Han A
    Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.