These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24589876)

  • 1. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis.
    Fu CY; Tseng SY; Yang SM; Hsu L; Liu CH; Chang HY
    Biofabrication; 2014 Mar; 6(1):015009. PubMed ID: 24589876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.
    Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M
    Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orderly arrangement of hepatocyte spheroids on a microfabricated chip.
    Fukuda J; Nakazawa K
    Tissue Eng; 2005; 11(7-8):1254-62. PubMed ID: 16144461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids.
    McMillan KS; Boyd M; Zagnoni M
    Lab Chip; 2016 Sep; 16(18):3548-57. PubMed ID: 27477673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip.
    Torisawa YS; Takagi A; Nashimoto Y; Yasukawa T; Shiku H; Matsue T
    Biomaterials; 2007 Jan; 28(3):559-66. PubMed ID: 16989897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery.
    Wu LY; Di Carlo D; Lee LP
    Biomed Microdevices; 2008 Apr; 10(2):197-202. PubMed ID: 17965938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device.
    Okuyama T; Yamazoe H; Mochizuki N; Khademhosseini A; Suzuki H; Fukuda J
    J Biosci Bioeng; 2010 Nov; 110(5):572-6. PubMed ID: 20591731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform.
    Hu K; Zhou N; Li Y; Ma S; Guo Z; Cao M; Zhang Q; Sun J; Zhang T; Gu N
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15113-9. PubMed ID: 27258682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.
    Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ
    Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel.
    Hu G; Li D
    Biomed Microdevices; 2007 Jun; 9(3):315-23. PubMed ID: 17203380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Hepatic Tissue Structures Using Multicellular Spheroid Culture.
    Tao F; Mihara H; Kojima N
    Methods Mol Biol; 2019; 1905():157-165. PubMed ID: 30536098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids.
    Zhao Z; Gu J; Zhao Y; Guan Y; Zhu XX; Zhang Y
    Biomacromolecules; 2014 Sep; 15(9):3306-12. PubMed ID: 25072634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bioprinted Liver-on-a-Chip for Drug Screening Applications.
    Knowlton S; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):681-682. PubMed ID: 27291461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review.
    Kim S; Lam PY; Jayaraman A; Han A
    Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.