These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Dynamics and stability of Purcell's three-link microswimmer near a wall. Or Y Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):065302. PubMed ID: 21230698 [TBL] [Abstract][Full Text] [Related]
24. Nonlinear dynamics of a microswimmer in Poiseuille flow. Zöttl A; Stark H Phys Rev Lett; 2012 May; 108(21):218104. PubMed ID: 23003306 [TBL] [Abstract][Full Text] [Related]
25. Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: the importance of hydrodynamic interactions. Hickey OA; Holm C; Smiatek J J Chem Phys; 2014 Apr; 140(16):164904. PubMed ID: 24784307 [TBL] [Abstract][Full Text] [Related]
26. Reduced surface accumulation of swimming bacteria in viscoelastic polymer fluids. Cao D; Dvoriashyna M; Liu S; Lauga E; Wu Y Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2212078119. PubMed ID: 36322736 [TBL] [Abstract][Full Text] [Related]
27. Hydrodynamic entrapment of bacteria swimming near a solid surface. Giacché D; Ishikawa T; Yamaguchi T Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056309. PubMed ID: 21230578 [TBL] [Abstract][Full Text] [Related]
28. Hydrodynamic repulsion of spheroidal microparticles from micro-rough surfaces. Belyaev AV PLoS One; 2017; 12(8):e0183093. PubMed ID: 28806767 [TBL] [Abstract][Full Text] [Related]
29. Rapid expulsion of microswimmers by a vortical flow. Sokolov A; Aranson IS Nat Commun; 2016 Mar; 7():11114. PubMed ID: 27005581 [TBL] [Abstract][Full Text] [Related]
30. Squirmer dynamics near a boundary. Ishimoto K; Gaffney EA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062702. PubMed ID: 24483481 [TBL] [Abstract][Full Text] [Related]
31. Adsorption of single polymer molecules in shear flow near a planar wall. Dutta S; Dorfman KD; Kumar S J Chem Phys; 2013 Jan; 138(3):034905. PubMed ID: 23343303 [TBL] [Abstract][Full Text] [Related]
32. Hydrodynamic attraction of swimming microorganisms by surfaces. Berke AP; Turner L; Berg HC; Lauga E Phys Rev Lett; 2008 Jul; 101(3):038102. PubMed ID: 18764299 [TBL] [Abstract][Full Text] [Related]
34. Hydrodynamic interaction of microswimmers near a wall. Li GJ; Ardekani AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372 [TBL] [Abstract][Full Text] [Related]
35. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions. Furukawa A; Marenduzzo D; Cates ME Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022303. PubMed ID: 25215734 [TBL] [Abstract][Full Text] [Related]
36. Mesoscale simulations of hydrodynamic squirmer interactions. Götze IO; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327 [TBL] [Abstract][Full Text] [Related]
37. Modelling the mechanics and hydrodynamics of swimming E. coli. Hu J; Yang M; Gompper G; Winkler RG Soft Matter; 2015 Oct; 11(40):7867-76. PubMed ID: 26256240 [TBL] [Abstract][Full Text] [Related]
38. An assessment of the dynamic stability of microorganisms on patterned surfaces in relation to biofouling control. Halder P; Nasabi M; Jayasuriya N; Shimeta J; Deighton M; Bhattacharya S; Mitchell A; Bhuiyan MA Biofouling; 2014; 30(6):695-707. PubMed ID: 24814651 [TBL] [Abstract][Full Text] [Related]
39. Propulsion efficiency and imposed flow fields of a copepod jump. Jiang H; Kiørboe T J Exp Biol; 2011 Feb; 214(Pt 3):476-86. PubMed ID: 21228207 [TBL] [Abstract][Full Text] [Related]
40. Strongly Accelerated Margination of Active Particles in Blood Flow. Gekle S Biophys J; 2016 Jan; 110(2):514-520. PubMed ID: 26789773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]