These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24590160)

  • 1. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs.
    Boere KW; Visser J; Seyednejad H; Rahimian S; Gawlitta D; van Steenbergen MJ; Dhert WJ; Hennink WE; Vermonden T; Malda J
    Acta Biomater; 2014 Jun; 10(6):2602-11. PubMed ID: 24590160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs.
    Viola M; Ainsworth MJ; Mihajlovic M; Cedillo-Servin G; van Steenbergen MJ; van Rijen M; de Ruijter M; Castilho M; Malda J; Vermonden T
    Biomacromolecules; 2024 Mar; 25(3):1563-1577. PubMed ID: 38323427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair.
    Han L; Xu J; Lu X; Gan D; Wang Z; Wang K; Zhang H; Yuan H; Weng J
    J Mater Chem B; 2017 Jan; 5(4):731-741. PubMed ID: 32263841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.
    Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S
    Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs.
    Pahoff S; Meinert C; Bas O; Nguyen L; Klein TJ; Hutmacher DW
    J Mater Chem B; 2019 Mar; 7(10):1761-1772. PubMed ID: 32254918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds.
    Suo H; Xu K; Zheng X
    J Biomater Appl; 2015 Feb; 29(7):977-87. PubMed ID: 25248323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs.
    Schuurman W; Levett PA; Pot MW; van Weeren PR; Dhert WJ; Hutmacher DW; Melchels FP; Klein TJ; Malda J
    Macromol Biosci; 2013 May; 13(5):551-61. PubMed ID: 23420700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration.
    Wang KY; Jin XY; Ma YH; Cai WJ; Xiao WY; Li ZW; Qi X; Ding J
    J Nanobiotechnology; 2021 Jul; 19(1):214. PubMed ID: 34275471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications.
    Park H; Temenoff JS; Holland TA; Tabata Y; Mikos AG
    Biomaterials; 2005 Dec; 26(34):7095-103. PubMed ID: 16023196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration.
    Gan D; Xu T; Xing W; Wang M; Fang J; Wang K; Ge X; Chan CW; Ren F; Tan H; Lu X
    J Mater Chem B; 2019 Mar; 7(10):1716-1725. PubMed ID: 32254913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering.
    Lee MY; Tsai WW; Chen HJ; Chen JP; Chen CH; Yeh WL; An J
    Biomed Mater Eng; 2013; 23(6):533-43. PubMed ID: 24165555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofabrication of reinforced 3D-scaffolds using two-component hydrogels.
    Boere KWM; Blokzijl MM; Visser J; Linssen JEA; Malda J; Hennink WE; Vermonden T
    J Mater Chem B; 2015 Dec; 3(46):9067-9078. PubMed ID: 32263038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering.
    Eslami M; Vrana NE; Zorlutuna P; Sant S; Jung S; Masoumi N; Khavari-Nejad RA; Javadi G; Khademhosseini A
    J Biomater Appl; 2014 Sep; 29(3):399-410. PubMed ID: 24733776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer.
    Wang W; Deng L; Liu S; Li X; Zhao X; Hu R; Zhang J; Han H; Dong A
    Acta Biomater; 2012 Nov; 8(11):3963-73. PubMed ID: 22835677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate.
    Levett PA; Melchels FP; Schrobback K; Hutmacher DW; Malda J; Klein TJ
    Acta Biomater; 2014 Jan; 10(1):214-23. PubMed ID: 24140603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds.
    Awad HA; Wickham MQ; Leddy HA; Gimble JM; Guilak F
    Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.