These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 24590180)

  • 1. Generation of spatiotemporal calcium patterns by coupling a pH-oscillator to a complexation equilibrium.
    Molnár I; Kurin-Csörgei K; Orbán M; Szalai I
    Chem Commun (Camb); 2014 Apr; 50(32):4158-60. PubMed ID: 24590180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Master-Slave to Peer-to-Peer Coupling in Chemical Reaction Networks.
    Holló G; Dúzs B; Szalai I; Lagzi I
    J Phys Chem A; 2017 May; 121(17):3192-3198. PubMed ID: 28398057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic pulses of calcium ions in a chemical system.
    Kurin-Csörgei K; Epstein IR; Orban M
    J Phys Chem A; 2006 Jun; 110(24):7588-92. PubMed ID: 16774201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern Formation in the Bromate-Sulfite-Ferrocyanide Reaction.
    Molnár I; Szalai I
    J Phys Chem A; 2015 Oct; 119(39):9954-61. PubMed ID: 26371068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced Oscillations and Pulse Waves in the Hydrogen Peroxide-Sulfite-Ferrocyanide Reaction.
    Liu Y; Yuan L; Pan C; Gao J; Zhou W; Gao Q
    J Phys Chem A; 2018 Feb; 122(5):1175-1184. PubMed ID: 29314845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the bromate-sulfite-ferrocyanide pH oscillator using the particle filter: toward the automated modeling of complex chemical systems.
    Sato N; Hasegawa HH; Kimura R; Mori Y; Okazaki N
    J Phys Chem A; 2010 Sep; 114(37):10090-6. PubMed ID: 20804146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and Diffusion-Driven Instabilities in the Bromate-Sulfite-Ferrocyanide System.
    Molnár I; Szalai I
    J Phys Chem A; 2017 Mar; 121(9):1900-1908. PubMed ID: 28222266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained spatiotemporal patterns in the bromate-sulfite reaction.
    Virányi Z; Szalai I; Boissonade J; De Kepper P
    J Phys Chem A; 2007 Aug; 111(33):8090-4. PubMed ID: 17672438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern formation in the ferrocyanide-iodate-sulfite reaction: the control of space scale separation.
    Szalai I; De Kepper P
    Chaos; 2008 Jun; 18(2):026105. PubMed ID: 18601507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-amplitude and mixed-mode pH oscillations in the bromate-sulfite-ferrocyanide-aluminum(III) system.
    Kovacs K; Leda M; Vanag VK; Epstein IR
    J Phys Chem A; 2009 Jan; 113(1):146-56. PubMed ID: 19086810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal dynamics of minimal bromate oscillators in an open one-side-fed reactor.
    Molnár I; Kurin-Csörgei K; Szalai I
    Phys Chem Chem Phys; 2018 May; 20(20):13851-13857. PubMed ID: 29740653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of spatiotemporal dynamics in the bromate-sulfite-ferrocyanide reaction system by visible light.
    Liu M; Meng C; Yuan L
    RSC Adv; 2022 May; 12(24):15145-15149. PubMed ID: 35685187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics of mixed Landolt systems in open gel reactors: effect of diffusive feed.
    Takács N; Horváth J; Szalai I
    J Phys Chem A; 2010 Jul; 114(26):7063-9. PubMed ID: 20540548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental design method leading to chemical Turing patterns.
    Horváth J; Szalai I; De Kepper P
    Science; 2009 May; 324(5928):772-5. PubMed ID: 19423823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous Chemical Modulation and Unidirectional Coupling in Two Oscillatory Chemical Systems.
    Holló G; Lagzi I
    J Phys Chem A; 2019 Feb; 123(8):1498-1504. PubMed ID: 30715885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained self-organizing pH patterns in hydrogen peroxide driven aqueous redox systems.
    Szalai I; Horváth J; Takács N; De Kepper P
    Phys Chem Chem Phys; 2011 Dec; 13(45):20228-34. PubMed ID: 21993534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New experimental data and mechanistic studies on the bromate-dual substrate-dual catalyst batch oscillator.
    Szalai I; Kurin-Csörgei K; Horvath V; Orban M
    J Phys Chem A; 2006 May; 110(18):6067-72. PubMed ID: 16671677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillatory concentration pulses of some divalent metal ions induced by a redox oscillator.
    Horváth V; Kurin-Csörgei K; Epstein IR; Orbán M
    Phys Chem Chem Phys; 2010 Feb; 12(6):1248-52. PubMed ID: 20119602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the Ferrocyanide-Iodate-Sulfite Oscillatory Chemical Reaction.
    Horváth V; Epstein IR; Kustin K
    J Phys Chem A; 2016 Mar; 120(12):1951-60. PubMed ID: 26949219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EGF-like module pair 3-4 in vitamin K-dependent protein S: modulation of calcium affinity of module 4 by module 3, and interaction with factor X.
    Stenberg Y; Muranyi A; Steen C; Thulin E; Drakenberg T; Stenflo J
    J Mol Biol; 1999 Oct; 293(3):653-65. PubMed ID: 10543957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.