BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24590189)

  • 1. Advances in solid-state NMR of cellulose.
    Foston M
    Curr Opin Biotechnol; 2014 Jun; 27():176-84. PubMed ID: 24590189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-ethyl-3-methylimidazolium acetate solvent.
    Cheng K; Sorek H; Zimmermann H; Wemmer DE; Pauly M
    Anal Chem; 2013 Mar; 85(6):3213-21. PubMed ID: 23413964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals.
    Kim JY; Lee HW; Lee SM; Jae J; Park YK
    Bioresour Technol; 2019 May; 279():373-384. PubMed ID: 30685133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.
    Zhang K; Pei Z; Wang D
    Bioresour Technol; 2016 Jan; 199():21-33. PubMed ID: 26343573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of molecular mobility during biomass pyrolysis as revealed by in situ (1)H NMR spectroscopy.
    Dufour A; Castro-Diaz M; Brosse N; Bouroukba M; Snape C
    ChemSusChem; 2012 Jul; 5(7):1258-65. PubMed ID: 22573541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR.
    Simmons TJ; Mortimer JC; Bernardinelli OD; Pöppler AC; Brown SP; deAzevedo ER; Dupree R; Dupree P
    Nat Commun; 2016 Dec; 7():13902. PubMed ID: 28000667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process.
    Lee HV; Hamid SB; Zain SK
    ScientificWorldJournal; 2014; 2014():631013. PubMed ID: 25247208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms.
    Li H; Pu Y; Kumar R; Ragauskas AJ; Wyman CE
    Biotechnol Bioeng; 2014 Mar; 111(3):485-92. PubMed ID: 24037461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy.
    Carpita NC
    Curr Opin Biotechnol; 2012 Jun; 23(3):330-7. PubMed ID: 22209015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of the Raman spectroscopy to the study of plant cell walls].
    Ma J; Ma JF; Zhang X; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1239-43. PubMed ID: 23905327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbohydrate-aromatic interface and molecular architecture of lignocellulose.
    Kirui A; Zhao W; Deligey F; Yang H; Kang X; Mentink-Vigier F; Wang T
    Nat Commun; 2022 Jan; 13(1):538. PubMed ID: 35087039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical characterisation of the whole plant cell wall of archaeological wood: an integrated approach.
    Zoia L; Tamburini D; Orlandi M; Łucejko JJ; Salanti A; Tolppa EL; Modugno F; Colombini MP
    Anal Bioanal Chem; 2017 Jul; 409(17):4233-4245. PubMed ID: 28484806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production.
    Hallac BB; Sannigrahi P; Pu Y; Ray M; Murphy RJ; Ragauskas AJ
    J Agric Food Chem; 2009 Feb; 57(4):1275-81. PubMed ID: 19170631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in modifying lignin for enhanced biofuel production.
    Simmons BA; Loqué D; Ralph J
    Curr Opin Plant Biol; 2010 Jun; 13(3):313-20. PubMed ID: 20359939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents.
    Kim S; Han J
    Bioresour Technol; 2016 Mar; 204():1-8. PubMed ID: 26765845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR.
    Kang X; Kirui A; Dickwella Widanage MC; Mentink-Vigier F; Cosgrove DJ; Wang T
    Nat Commun; 2019 Jan; 10(1):347. PubMed ID: 30664653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
    Zeng Y; Zhao S; Yang S; Ding SY
    Curr Opin Biotechnol; 2014 Jun; 27():38-45. PubMed ID: 24863895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.