These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24590572)

  • 1. The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose.
    De Figueiredo LP; Ferreira FF
    J Pharm Sci; 2014 May; 103(5):1394-9. PubMed ID: 24590572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of compressional force on the crystallinity of directly compressible cellulose excipients.
    Kumar V; Kothari SH
    Int J Pharm; 1999 Jan; 177(2):173-82. PubMed ID: 10205612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the crystallinity of cephalexin in pharmaceutical formulations by chemometrical near-infrared spectroscopy.
    Fukui Y; Otsuka M
    Drug Dev Ind Pharm; 2010 Jan; 36(1):72-80. PubMed ID: 19656006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns.
    Bates S; Zografi G; Engers D; Morris K; Crowley K; Newman A
    Pharm Res; 2006 Oct; 23(10):2333-49. PubMed ID: 17021963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two commercial brands of microcrystalline cellulose for extrusion-spheronization.
    Law MF; Deasy PB; McLaughlin JP; Gabriel S
    J Microencapsul; 1997; 14(6):713-23. PubMed ID: 9394252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of processing and polymorphic form effect on the powder and tableting properties of microcrystalline celluloses I and II.
    Rojas J; López A; Gamboa Y; González C; Montoya F
    Chem Pharm Bull (Tokyo); 2011; 59(5):603-7. PubMed ID: 21532198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates.
    Bansal P; Hall M; Realff MJ; Lee JH; Bommarius AS
    Bioresour Technol; 2010 Jun; 101(12):4461-71. PubMed ID: 20172714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse gas chromatography: considerations about appropriate use for amorphous and crystalline powders.
    Planinsek O; Buckton G
    J Pharm Sci; 2003 Jun; 92(6):1286-94. PubMed ID: 12761817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystallinity of cellulose controls the physical distribution of sorbed water and the capacity to present water for chemical degradation of a solid drug.
    Höckerfelt MH; Alderborn G
    Int J Pharm; 2014 Dec; 477(1-2):326-33. PubMed ID: 25455777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the mechanical strength of dried microcrystalline cellulose pellets are not due to significant changes in the degree of hydrogen bonding.
    Millili GP; Wigent RJ; Schwartz JB
    Pharm Dev Technol; 1996 Oct; 1(3):239-49. PubMed ID: 9552306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effect of cellulose crystallinity on the moisture absorbability of a pharmaceutical tablet studied by near-infrared spectroscopy.
    Awa K; Shinzawa H; Ozaki Y
    Appl Spectrosc; 2014; 68(6):625-32. PubMed ID: 25014717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moisture sorption by cellulose powders of varying crystallinity.
    Mihranyan A; Llagostera AP; Karmhag R; Strømme M; Ek R
    Int J Pharm; 2004 Jan; 269(2):433-42. PubMed ID: 14706254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of cellulose powder structure on moisture-induced degradation of acetylsalicylic acid.
    Mihranyan A; Strømme M; Ek R
    Eur J Pharm Sci; 2006 Feb; 27(2-3):220-5. PubMed ID: 16311024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose.
    Celik M; Ong JT; Chowhan ZT; Samuel GJ
    Pharm Dev Technol; 1996 Jul; 1(2):119-26. PubMed ID: 9552338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a new method to get a reliable powder flow characteristics using only 1 to 2 g of powder.
    Seppälä K; Heinämäki J; Hatara J; Seppälä L; Yliruusi J
    AAPS PharmSciTech; 2010 Mar; 11(1):402-8. PubMed ID: 20238189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of highly compressible Ceolus™ microcrystalline cellulose for improved dosage form properties containing a hydrophilic solid dispersion.
    Dinunzio JC; Schilling SU; Coney AW; Hughey JR; Kaneko N; McGinity JW
    Drug Dev Ind Pharm; 2012 Feb; 38(2):180-9. PubMed ID: 21774741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermogravimetric analysis for the determination of water release rate from microcrystalline cellulose dry powder and wet bead systems.
    Mayville FC; Wigent RJ; Schwartz JB
    Pharm Dev Technol; 2006; 11(3):359-70. PubMed ID: 16895846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Batch effects, water content and aqueous/organic solvent reactivity of microcrystalline cellulose samples.
    Ardizzone S; Dioguardi FS; Mussini PR; Mussini T; Rondinini S; Vercelli B; Vertova A
    Int J Biol Macromol; 1999 Dec; 26(4):269-77. PubMed ID: 10569289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of cellulose crystallinity from powder diffraction diagrams.
    Lindner B; Petridis L; Langan P; Smith JC
    Biopolymers; 2015 Feb; 103(2):67-73. PubMed ID: 25269646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.