These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24590994)
1. New cage for posterior minimally invasive lumbar interbody fusion: a study in vitro and in vivo. Hong X; Wu XT; Zhuang SY; Bao JP; Shi R Orthop Surg; 2014 Feb; 6(1):47-53. PubMed ID: 24590994 [TBL] [Abstract][Full Text] [Related]
2. Distractive properties of a threaded interbody fusion device. An in vivo model. Sandhu HS; Turner S; Kabo JM; Kanim LE; Liu D; Nourparvar A; Delamarter RB; Dawson EG Spine (Phila Pa 1976); 1996 May; 21(10):1201-10. PubMed ID: 8727195 [TBL] [Abstract][Full Text] [Related]
3. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Sandhu HS; Toth JM; Diwan AD; Seim HB; Kanim LE; Kabo JM; Turner AS Spine (Phila Pa 1976); 2002 Mar; 27(6):567-75. PubMed ID: 11884903 [TBL] [Abstract][Full Text] [Related]
4. Influence of cage design on interbody fusion in a sheep cervical spine model. Kandziora F; Schollmeier G; Scholz M; Schaefer J; Scholz A; Schmidmaier G; Schröder R; Bail H; Duda G; Mittlmeier T; Haas NP J Neurosurg; 2002 Apr; 96(3 Suppl):321-32. PubMed ID: 11990842 [TBL] [Abstract][Full Text] [Related]
5. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Haid RW; Branch CL; Alexander JT; Burkus JK Spine J; 2004; 4(5):527-38; discussion 538-9. PubMed ID: 15363423 [TBL] [Abstract][Full Text] [Related]
6. [Experimental fusion of the sheep cervical spine. Part I: Effect of cage design on interbody fusion]. Kandziora F; Pflugmacher R; Scholz M; Schäfer J; Schollmeier G; Schnake KJ; Bail H; Duda G; Haas NP Chirurg; 2002 Sep; 73(9):909-17. PubMed ID: 12297957 [TBL] [Abstract][Full Text] [Related]
7. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
8. Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage. Brodke DS; Dick JC; Kunz DN; McCabe R; Zdeblick TA Spine (Phila Pa 1976); 1997 Jan; 22(1):26-31. PubMed ID: 9122778 [TBL] [Abstract][Full Text] [Related]
9. Bioabsorbable interbody cages in a sheep cervical spine fusion model. Kandziora F; Pflugmacher R; Scholz M; Eindorf T; Schnake KJ; Haas NP Spine (Phila Pa 1976); 2004 Sep; 29(17):1845-55; discussion 1856. PubMed ID: 15534403 [TBL] [Abstract][Full Text] [Related]
10. Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Tsantrizos A; Baramki HG; Zeidman S; Steffen T Spine (Phila Pa 1976); 2000 Aug; 25(15):1899-907. PubMed ID: 10908932 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical comparison of cervical spine interbody fusion cages. Kandziora F; Pflugmacher R; Schäfer J; Born C; Duda G; Haas NP; Mittlmeier T Spine (Phila Pa 1976); 2001 Sep; 26(17):1850-7. PubMed ID: 11568693 [TBL] [Abstract][Full Text] [Related]
12. Posterior lumbar interbody fusion using posterolateral placement of a single cylindrical threaded cage. Zhao J; Hai Y; Ordway NR; Park CK; Yuan HA Spine (Phila Pa 1976); 2000 Feb; 25(4):425-30. PubMed ID: 10707386 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion. Tencer AF; Hampton D; Eddy S Spine (Phila Pa 1976); 1995 Nov; 20(22):2408-14. PubMed ID: 8578391 [TBL] [Abstract][Full Text] [Related]
14. A prospective, randomized controlled clinical trial of anterior lumbar interbody fusion using a titanium cylindrical threaded fusion device. Sasso RC; Kitchel SH; Dawson EG Spine (Phila Pa 1976); 2004 Jan; 29(2):113-22; discussion 121-2. PubMed ID: 14722400 [TBL] [Abstract][Full Text] [Related]
15. The role of cage height on the flexibility and load sharing of lumbar spine after lumbar interbody fusion with unilateral and bilateral instrumentation: a biomechanical study. Du L; Sun XJ; Zhou TJ; Li YC; Chen C; Zhao CQ; Zhang K; Zhao J BMC Musculoskelet Disord; 2017 Nov; 18(1):474. PubMed ID: 29162074 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of bioabsorbable multiamino acid copolymer/α-tri-calcium phosphate interbody fusion cages in a goat model. Chunguang Z; Yueming S; Chongqi T; Hong D; Fuxing P; Yonggang Y; Hong L Spine (Phila Pa 1976); 2011 Dec; 36(25):E1615-22. PubMed ID: 21270683 [TBL] [Abstract][Full Text] [Related]
18. Bone morphogenetic protein-2 application by a poly(D,L-lactide)-coated interbody cage: in vivo results of a new carrier for growth factors. Kandziora F; Bail H; Schmidmaier G; Schollmeier G; Scholz M; Knispel C; Hiller T; Pflugmacher R; Mittlmeier T; Raschke M; Haas NP J Neurosurg; 2002 Jul; 97(1 Suppl):40-8. PubMed ID: 12120650 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion. Bhatia NN; Lee KH; Bui CN; Luna M; Wahba GM; Lee TQ Spine (Phila Pa 1976); 2012 Jan; 37(2):E79-85. PubMed ID: 21629171 [TBL] [Abstract][Full Text] [Related]
20. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. Kanayama M; Cunningham BW; Haggerty CJ; Abumi K; Kaneda K; McAfee PC J Neurosurg; 2000 Oct; 93(2 Suppl):259-65. PubMed ID: 11012057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]