These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 24591090)
1. Characterization of olive mill wastewater fractions treatment by integrated membrane process. Di Lecce G; Cassano A; Bendini A; Conidi C; Giorno L; Toschi TG J Sci Food Agric; 2014 Nov; 94(14):2935-42. PubMed ID: 24591090 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the agroecological applications of olive mill wastewater fractions from the ultrafiltration-nanofiltration process. Saf C; Gondet L; Villain-Gambier M; Belaqziz M; Trebouet D; Ouazzani N J Environ Manage; 2023 May; 333():117467. PubMed ID: 36764180 [TBL] [Abstract][Full Text] [Related]
3. Recovery and stability over time of phenolic fractions by an industrial filtration system of olive mill wastewaters: a three-year study. Bellumori M; Cecchi L; Romani A; Mulinacci N; Innocenti M J Sci Food Agric; 2018 May; 98(7):2761-2769. PubMed ID: 29105769 [TBL] [Abstract][Full Text] [Related]
4. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Garcia-Castello E; Cassano A; Criscuoli A; Conidi C; Drioli E Water Res; 2010 Jul; 44(13):3883-92. PubMed ID: 20639013 [TBL] [Abstract][Full Text] [Related]
5. Optimization of operating conditions for the valorization of olive mill wastewater using membrane processes. De Almeida MS; Martins RC; Quinta-Ferreira RM; Gando-Ferreira LM Environ Sci Pollut Res Int; 2018 Aug; 25(22):21968-21981. PubMed ID: 29797198 [TBL] [Abstract][Full Text] [Related]
6. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction. Sedej I; Milczarek R; Wang SC; Sheng R; de Jesús Avena-Bustillos R; Dao L; Takeoka G J Food Sci; 2016 Apr; 81(4):E889-96. PubMed ID: 26989993 [TBL] [Abstract][Full Text] [Related]
7. Impacts of operating conditions on nanofiltration of secondary-treated two-phase olive mill wastewater. Ochando Pulido JM; Martínez Férez A J Environ Manage; 2015 Sep; 161():219-227. PubMed ID: 26186549 [TBL] [Abstract][Full Text] [Related]
8. Microalgal biomass production by using ultra- and nanofiltration membrane fractions of olive mill wastewater. Cicci A; Stoller M; Bravi M Water Res; 2013 Sep; 47(13):4710-8. PubMed ID: 23770485 [TBL] [Abstract][Full Text] [Related]
9. Characteristics and biodegradability of olive mill wastewaters. Karahan Özgün Ö; Pala Özkök İ; Kutay C; Orhon D Environ Technol; 2016; 37(10):1240-8. PubMed ID: 26507588 [TBL] [Abstract][Full Text] [Related]
10. A focus on pressure-driven membrane technology in olive mill wastewater reclamation: state of the art. Ochando-Pulido JM; Martinez-Ferez A Water Sci Technol; 2012; 66(12):2505-16. PubMed ID: 23109564 [TBL] [Abstract][Full Text] [Related]
11. A review on the use of membrane technology and fouling control for olive mill wastewater treatment. Pulido JM Sci Total Environ; 2016 Sep; 563-564():664-75. PubMed ID: 26472261 [TBL] [Abstract][Full Text] [Related]
12. Pilot scale nanofiltration treatment of olive mill wastewater: a technical and economical evaluation. Sanches S; Fraga MC; Silva NA; Nunes P; Crespo JG; Pereira VJ Environ Sci Pollut Res Int; 2017 Feb; 24(4):3506-3518. PubMed ID: 27878484 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology. Ochando-Pulido JM; Victor-Ortega MD; Hodaifa G; Martinez-Ferez A Sci Total Environ; 2015 Jan; 503-504():113-21. PubMed ID: 25017639 [TBL] [Abstract][Full Text] [Related]
14. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. Zagklis DP; Vavouraki AI; Kornaros ME; Paraskeva CA J Hazard Mater; 2015 Mar; 285():69-76. PubMed ID: 25497019 [TBL] [Abstract][Full Text] [Related]
15. Phenolic profile and antioxidant activities of olive mill wastewater. El-Abbassi A; Kiai H; Hafidi A Food Chem; 2012 May; 132(1):406-12. PubMed ID: 26434308 [TBL] [Abstract][Full Text] [Related]
16. Control systems for olive mill wastewater treatment with ultrafiltration and nanofiltration membrane in series based on the boundary flux theory. Ochando-Pulido JM Water Sci Technol; 2017 Dec; 76(11-12):2968-2978. PubMed ID: 29210684 [TBL] [Abstract][Full Text] [Related]
17. Biocompounds recovery from olive mill wastewater by liquid-liquid extraction and integration with Fenton's process for water reuse. Martins D; Martins RC; Braga MEM Environ Sci Pollut Res Int; 2021 Jun; 28(23):29521-29534. PubMed ID: 33559081 [TBL] [Abstract][Full Text] [Related]
18. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Ioannou-Ttofa L; Michael-Kordatou I; Fattas SC; Eusebio A; Ribeiro B; Rusan M; Amer AR; Zuraiqi S; Waismand M; Linder C; Wiesman Z; Gilron J; Fatta-Kassinos D Water Res; 2017 May; 114():1-13. PubMed ID: 28214720 [TBL] [Abstract][Full Text] [Related]
19. Fractionation of olive mill wastewaters by membrane separation techniques. Cassano A; Conidi C; Giorno L; Drioli E J Hazard Mater; 2013 Mar; 248-249():185-93. PubMed ID: 23376489 [TBL] [Abstract][Full Text] [Related]
20. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus. Koutrotsios G; Larou E; Mountzouris KC; Zervakis GI Appl Biochem Biotechnol; 2016 Sep; 180(2):195-209. PubMed ID: 27138726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]