These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 24591109)

  • 21. Anti-vascular nano agents: a promising approach for cancer treatment.
    Chen D; Qu X; Shao J; Wang W; Dong X
    J Mater Chem B; 2020 Apr; 8(15):2990-3004. PubMed ID: 32211649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting anticancer drugs to tumor vasculature using cationic liposomes.
    Abu Lila AS; Ishida T; Kiwada H
    Pharm Res; 2010 Jul; 27(7):1171-83. PubMed ID: 20333455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities.
    Waite CL; Roth CM
    Crit Rev Biomed Eng; 2012; 40(1):21-41. PubMed ID: 22428797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional peptides for tumor therapy.
    Li K; Liu CJ; Zhang XZ
    Adv Drug Deliv Rev; 2020; 160():36-51. PubMed ID: 33080257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors.
    Milowsky MI; Nanus DM; Kostakoglu L; Sheehan CE; Vallabhajosula S; Goldsmith SJ; Ross JS; Bander NH
    J Clin Oncol; 2007 Feb; 25(5):540-7. PubMed ID: 17290063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon Nanomaterials for Drug Delivery and Cancer Therapy.
    Chakrabarti M; Kiseleva R; Vertegel A; Ray SK
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5501-11. PubMed ID: 26369109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in tumor vasculature targeting using liposomal drug delivery systems.
    Abu Lila AS; Ishida T; Kiwada H
    Expert Opin Drug Deliv; 2009 Dec; 6(12):1297-309. PubMed ID: 19780711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular targeting of angiogenesis.
    Alessi P; Ebbinghaus C; Neri D
    Biochim Biophys Acta; 2004 Mar; 1654(1):39-49. PubMed ID: 14984766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of nanosystems to anticancer drug therapy (Part I. Nanogels, nanospheres, nanocapsules).
    Talevi A; Gantner ME; Ruiz ME
    Recent Pat Anticancer Drug Discov; 2014 Jan; 9(1):83-98. PubMed ID: 23227942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances and Strategies in Tumor Vasculature Targeted Nano-Drug Delivery Systems.
    Ying M; Chen G; Lu W
    Curr Pharm Des; 2015; 21(22):3066-75. PubMed ID: 26027578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A concise review of current radiopharmaceuticals in tumor angiogenesis imaging.
    Lu X; Wang RF
    Curr Pharm Des; 2012; 18(8):1032-40. PubMed ID: 22272823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal in vivo imaging exposes the voyage of nanoparticles in tumor microcirculation.
    Toy R; Hayden E; Camann A; Berman Z; Vicente P; Tran E; Meyers J; Pansky J; Peiris PM; Wu H; Exner A; Wilson D; Ghaghada KB; Karathanasis E
    ACS Nano; 2013 Apr; 7(4):3118-29. PubMed ID: 23464827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs.
    Accardo A; Aloj L; Aurilio M; Morelli G; Tesauro D
    Int J Nanomedicine; 2014; 9():1537-57. PubMed ID: 24741304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted nanodrugs for cancer therapy: prospects and challenges.
    Bottini M; Sacchetti C; Pietroiusti A; Bellucci S; Magrini A; Rosato N; Bottini N
    J Nanosci Nanotechnol; 2014 Jan; 14(1):98-114. PubMed ID: 24730253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy.
    Guo D; Xu S; Wang N; Jiang H; Huang Y; Jin X; Xue B; Zhang C; Zhu X
    Biomaterials; 2017 Nov; 144():188-198. PubMed ID: 28837960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications.
    Ni D; Jiang D; Ehlerding EB; Huang P; Cai W
    Acc Chem Res; 2018 Mar; 51(3):778-788. PubMed ID: 29489335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles.
    Gong C; Deng S; Wu Q; Xiang M; Wei X; Li L; Gao X; Wang B; Sun L; Chen Y; Li Y; Liu L; Qian Z; Wei Y
    Biomaterials; 2013 Jan; 34(4):1413-32. PubMed ID: 23164423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic
    Scarpelli M; Simoncic U; Perlman S; Liu G; Jeraj R
    Phys Med Biol; 2018 Jul; 63(15):155008. PubMed ID: 29978839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extravasation of polymeric nanomedicines across tumor vasculature.
    Danquah MK; Zhang XA; Mahato RI
    Adv Drug Deliv Rev; 2011 Jul; 63(8):623-39. PubMed ID: 21144874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growing tumor vessels: more than one way to skin a cat - implications for angiogenesis targeted cancer therapies.
    Leite de Oliveira R; Hamm A; Mazzone M
    Mol Aspects Med; 2011 Apr; 32(2):71-87. PubMed ID: 21540050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.