These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 24591225)
1. In vitro characteristics of a gelling PEGDA-QT polymer system with model drug release for cerebral aneurysm embolization. Soodak KF; Brennecka CR; Vernon BL J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1477-88. PubMed ID: 24591225 [TBL] [Abstract][Full Text] [Related]
2. In vitro characteristics of a gelling PEGDA-QT polymer system with model drug release for cerebral aneurysm embolization. Soodak KF; Brennecka CR; Vernon BL J Biomed Mater Res B Appl Biomater; 2013 Jun; ():. PubMed ID: 23749590 [TBL] [Abstract][Full Text] [Related]
3. In vitro delivery, cytotoxicity, swelling, and degradation behavior of a liquid-to-solid gelling polymer system for cerebral aneurysm embolization. Brennecka CR; Preul MC; Vernon BL J Biomed Mater Res B Appl Biomater; 2012 Jul; 100(5):1298-309. PubMed ID: 22514032 [TBL] [Abstract][Full Text] [Related]
4. Gelling process differences in reverse emulsion, in situ gelling polymeric materials for intracranial aneurysm embolization, formulated with injectable contrast agents. Riley CM; McLemore R; Preul MC; Vernon BL J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):47-56. PubMed ID: 20967823 [TBL] [Abstract][Full Text] [Related]
5. In vivo embolization of lateral wall aneurysms in canines using the liquid-to-solid gelling PPODA-QT polymer system: 6-month pilot study. Brennecka CR; Preul MC; Becker TA; Vernon BL J Neurosurg; 2013 Jul; 119(1):228-38. PubMed ID: 23560578 [TBL] [Abstract][Full Text] [Related]
6. In vivo experimental aneurysm embolization in a swine model with a liquid-to-solid gelling polymer system: initial biocompatibility and delivery strategy analysis. Brennecka CR; Preul MC; Bichard WD; Vernon BL World Neurosurg; 2012 Nov; 78(5):469-80. PubMed ID: 22120570 [TBL] [Abstract][Full Text] [Related]
7. Formulation and characterization of radio-opaque conjugated in situ gelling materials. Blakely B; Hoon Lee B; Riley C; McLemore R; Pathak CP; Vernon BL J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):9-17. PubMed ID: 20127874 [TBL] [Abstract][Full Text] [Related]
8. PEGDA hydrogels as a replacement for animal tissues in mucoadhesion testing. Eshel-Green T; Eliyahu S; Avidan-Shlomovich S; Bianco-Peled H Int J Pharm; 2016 Jun; 506(1-2):25-34. PubMed ID: 27084292 [TBL] [Abstract][Full Text] [Related]
10. Cytotoxicity, in vitro models and preliminary in vivo study of dual physical and chemical gels for endovascular embolization of cerebral aneurysms. Bearat HH; Preul MC; Vernon BL J Biomed Mater Res A; 2013 Sep; 101(9):2515-25. PubMed ID: 23359550 [TBL] [Abstract][Full Text] [Related]
11. Water-borne, in situ crosslinked biomaterials from phase-segregated precursors. Vernon B; Tirelli N; Bächi T; Haldimann D; Hubbell JA J Biomed Mater Res A; 2003 Mar; 64(3):447-56. PubMed ID: 12579558 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and Characterisation of Photocrosslinked poly(ethylene glycol) diacrylate Implants for Sustained Ocular Drug Delivery. McAvoy K; Jones D; Thakur RRS Pharm Res; 2018 Jan; 35(2):36. PubMed ID: 29368249 [TBL] [Abstract][Full Text] [Related]
13. Partition-controlled progesterone release from waterborne, in situ-gelling materials. Vernon BL; Fusaro F; Borden B; Roy KH Int J Pharm; 2004 Apr; 274(1-2):191-200. PubMed ID: 15072795 [TBL] [Abstract][Full Text] [Related]
14. Mechanical and cell viability properties of crosslinked low- and high-molecular weight poly(ethylene glycol) diacrylate blends. Mazzoccoli JP; Feke DL; Baskaran H; Pintauro PN J Biomed Mater Res A; 2010 May; 93(2):558-66. PubMed ID: 19585581 [TBL] [Abstract][Full Text] [Related]
15. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation. Rich MH; Lee MK; Marshall N; Clay N; Chen J; Mahmassani Z; Boppart M; Kong H Biomacromolecules; 2015 Aug; 16(8):2255-64. PubMed ID: 26113238 [TBL] [Abstract][Full Text] [Related]
16. Comparison of properties between NIPAAm-based simultaneously physically and chemically gelling polymer systems for use in vivo. Bearat HH; Lee BH; Vernon BL Acta Biomater; 2012 Oct; 8(10):3629-42. PubMed ID: 22705635 [TBL] [Abstract][Full Text] [Related]
18. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems. Liu H; Venkatraman SS J Biomater Sci Polym Ed; 2012; 23(1-4):251-66. PubMed ID: 21244721 [TBL] [Abstract][Full Text] [Related]
19. Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives. Petit A; Müller B; Bruin P; Meyboom R; Piest M; Kroon-Batenburg LM; de Leede LG; Hennink WE; Vermonden T Acta Biomater; 2012 Dec; 8(12):4260-7. PubMed ID: 22877819 [TBL] [Abstract][Full Text] [Related]
20. Bacterial cellulose gels with high mechanical strength. Numata Y; Sakata T; Furukawa H; Tajima K Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():57-62. PubMed ID: 25492172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]