BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24591308)

  • 21. Molecular recognition of nucleotides by means of ionic interaction in hydrophobic media.
    Tabushi I; Kobuke Y; Imuta J
    Nucleic Acids Symp Ser; 1979; (6):s175-8. PubMed ID: 547231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Separation and direct quantitative estimation of adenine nucleotides on silufol].
    Zarubina IV; Krivoruchko BI
    Ukr Biokhim Zh (1978); 1982; 54(4):437-9. PubMed ID: 6291206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screening of the most relevant parameters for method development in ultra-high performance hydrophilic interaction chromatography.
    Periat A; Debrus B; Rudaz S; Guillarme D
    J Chromatogr A; 2013 Mar; 1282():72-83. PubMed ID: 23411147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-performance liquid chromatographic method for the simultaneous determination of myocardial creatine phosphate and adenosine nucleotides.
    Bedford GK; Chiong MA
    J Chromatogr; 1984 Jan; 305(1):183-7. PubMed ID: 6707142
    [No Abstract]   [Full Text] [Related]  

  • 25. Zirconia based monoliths used in hydrophilic-interaction chromatography for original selectivity of xanthines.
    Randon J; Huguet S; Demesmay C; Berthod A
    J Chromatogr A; 2010 Feb; 1217(9):1496-500. PubMed ID: 20079499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous separation of hydrophobic and polar bases using a silica hydride stationary phase.
    Yang Y; Matyska MT; Boysen RI; Pesek JJ; Hearn MT
    J Sep Sci; 2013 Apr; 36(7):1209-16. PubMed ID: 23450632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode.
    Wu J; Bicker W; Lindner W
    J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry.
    Apfelthaler E; Bicker W; Lämmerhofer M; Sulyok M; Krska R; Lindner W; Schuhmacher R
    J Chromatogr A; 2008 May; 1191(1-2):171-81. PubMed ID: 18199445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Adenosine nucleotide metabolism of the myocardium].
    Müller MM; Mohl W; Schopf G
    Z Med Lab Diagn; 1985; 26(2):71-6. PubMed ID: 3993166
    [No Abstract]   [Full Text] [Related]  

  • 30. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography.
    West C; Khater S; Lesellier E
    J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile synthesis of zirconia-coated mesoporous silica particles by hydrothermal strategy under low potential of hydrogen conditions and functionalization with dodecylphosphonic acid for high-performance liquid chromatography.
    Song Z; Li S; Guan Y; Wang S; Wang Y; Yang G; Zhang X; Li J; Song W; Zhou C; Chen L
    J Chromatogr A; 2020 Feb; 1612():460659. PubMed ID: 31708214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode.
    Bicker W; Wu J; Yeman H; Albert K; Lindner W
    J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and validation of a HILIC-UV method for the determination of nucleotides in fish samples.
    Logotheti M; Theochari K; Kostakis M; Pasias IN; Thomaidis NS
    Food Chem; 2018 May; 248():70-77. PubMed ID: 29329872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rapid HPLC method for determination of adenylate energy charge.
    Viarengo A; Secondini A; Scoppa P; Orunesu M
    Experientia; 1986 Dec; 42(11-12):1234-5. PubMed ID: 3780947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imidazoline type stationary phase for hydrophilic interaction chromatography and reversed-phase liquid chromatography.
    Li Y; Feng Y; Chen T; Zhang H
    J Chromatogr A; 2011 Sep; 1218(35):5987-94. PubMed ID: 21543075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts.
    Jandera P
    J Sep Sci; 2008 May; 31(9):1421-37. PubMed ID: 18428181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Underivatized amylose and cellulose as new stationary phases for hydrophilic interaction chromatography.
    Lehnert P; Douša M; Lemr K
    J Sep Sci; 2013 Oct; 36(20):3345-50. PubMed ID: 23983151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative, analytical separation of adenine nucleotides by column chromatography on polyethyleneimine-coated cellulose.
    Magnusson RP; Portis AR; McCarty RE
    Anal Biochem; 1976 May; 72():653-7. PubMed ID: 182039
    [No Abstract]   [Full Text] [Related]  

  • 39. [Determination of creatine, phosphocreatine and adenosinephosphates in experimental hydrocephalus tissue by reversed-phase high performance liquid chromatography].
    Sun AM; Wang ER; Mao BY; Chao RB; Huang X; Xu XC
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2004 Jan; 35(1):113-6. PubMed ID: 14981833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and application of novel zwitterionic monolithic column for hydrophilic interaction chromatography.
    Liu Z; Peng Y; Wang T; Yuan G; Zhang Q; Guo J; Jiang Z
    J Sep Sci; 2013 Jan; 36(2):262-9. PubMed ID: 23180752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.