These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 24591453)
1. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Smith DL; Perkins TA; Reiner RC; Barker CM; Niu T; Chaves LF; Ellis AM; George DB; Le Menach A; Pulliam JR; Bisanzio D; Buckee C; Chiyaka C; Cummings DA; Garcia AJ; Gatton ML; Gething PW; Hartley DM; Johnston G; Klein EY; Michael E; Lloyd AL; Pigott DM; Reisen WK; Ruktanonchai N; Singh BK; Stoller J; Tatem AJ; Kitron U; Godfray HC; Cohen JM; Hay SI; Scott TW Trans R Soc Trop Med Hyg; 2014 Apr; 108(4):185-97. PubMed ID: 24591453 [TBL] [Abstract][Full Text] [Related]
2. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. Smith DL; Battle KE; Hay SI; Barker CM; Scott TW; McKenzie FE PLoS Pathog; 2012; 8(4):e1002588. PubMed ID: 22496640 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. Perkins TA; Scott TW; Le Menach A; Smith DL PLoS Comput Biol; 2013; 9(12):e1003327. PubMed ID: 24348223 [TBL] [Abstract][Full Text] [Related]
4. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. Reiner RC; Perkins TA; Barker CM; Niu T; Chaves LF; Ellis AM; George DB; Le Menach A; Pulliam JR; Bisanzio D; Buckee C; Chiyaka C; Cummings DA; Garcia AJ; Gatton ML; Gething PW; Hartley DM; Johnston G; Klein EY; Michael E; Lindsay SW; Lloyd AL; Pigott DM; Reisen WK; Ruktanonchai N; Singh BK; Tatem AJ; Kitron U; Hay SI; Scott TW; Smith DL J R Soc Interface; 2013 Apr; 10(81):20120921. PubMed ID: 23407571 [TBL] [Abstract][Full Text] [Related]
5. Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions. Hancock PA; Godfray HC Malar J; 2007 Jul; 6():98. PubMed ID: 17663757 [TBL] [Abstract][Full Text] [Related]
6. INFRAVEC: research capacity for the implementation of genetic control of mosquitoes. Crisanti A Pathog Glob Health; 2013 Dec; 107(8):458-62. PubMed ID: 24428829 [TBL] [Abstract][Full Text] [Related]
7. Spatial dynamics of malaria transmission. Wu SL; Henry JM; Citron DT; Mbabazi Ssebuliba D; Nakakawa Nsumba J; Sánchez C HM; Brady OJ; Guerra CA; García GA; Carter AR; Ferguson HM; Afolabi BE; Hay SI; Reiner RC; Kiware S; Smith DL PLoS Comput Biol; 2023 Jun; 19(6):e1010684. PubMed ID: 37307282 [TBL] [Abstract][Full Text] [Related]
8. Ecological Effects on the Dynamics of West Nile Virus and Avian Ferraguti M; Martínez-de la Puente J; Figuerola J Viruses; 2021 Jun; 13(7):. PubMed ID: 34201673 [TBL] [Abstract][Full Text] [Related]
9. Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection. Eder M; Cortes F; Teixeira de Siqueira Filha N; Araújo de França GV; Degroote S; Braga C; Ridde V; Turchi Martelli CM Infect Dis Poverty; 2018 Sep; 7(1):90. PubMed ID: 30173661 [TBL] [Abstract][Full Text] [Related]
10. Mosquito vectors of infectious diseases: are they neglected health disaster in Egypt? El-Bahnasawy MM; Fadil EE; Morsy TA J Egypt Soc Parasitol; 2013 Aug; 43(2):373-86. PubMed ID: 24260815 [TBL] [Abstract][Full Text] [Related]
11. Mosquito species identity matters: unraveling the complex interplay in vector-borne diseases. Ferraguti M Infect Dis (Lond); 2024 Sep; 56(9):685-696. PubMed ID: 38795138 [TBL] [Abstract][Full Text] [Related]
12. The risk of a mosquito-borne infection in a heterogeneous environment. Smith DL; Dushoff J; McKenzie FE PLoS Biol; 2004 Nov; 2(11):e368. PubMed ID: 15510228 [TBL] [Abstract][Full Text] [Related]
13. Spatial heterogeneity, host movement and mosquito-borne disease transmission. Acevedo MA; Prosper O; Lopiano K; Ruktanonchai N; Caughlin TT; Martcheva M; Osenberg CW; Smith DL PLoS One; 2015; 10(6):e0127552. PubMed ID: 26030769 [TBL] [Abstract][Full Text] [Related]
14. Maximum equilibrium prevalence of mosquito-borne microparasite infections in humans. Amaku M; Burattini MN; Coutinho FA; Lopez LF; Massad E Comput Math Methods Med; 2013; 2013():659038. PubMed ID: 24454539 [TBL] [Abstract][Full Text] [Related]
15. [Comparison of the transmission dynamics and the control effects between malaria and filariasis by using mathematical model]. Wu KL; Wu KC Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1993; 11(3):185-9. PubMed ID: 8168240 [TBL] [Abstract][Full Text] [Related]
16. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior. Simoy MI; Aparicio JP Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929 [TBL] [Abstract][Full Text] [Related]
17. [Mosquitoes (Diptera, Culicidae) and their medical importance for Portugal: challenges for the 21st century]. Gouveia de Almeida AP Acta Med Port; 2011; 24(6):961-74. PubMed ID: 22713191 [TBL] [Abstract][Full Text] [Related]
18. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease. Foley DH; Wilkerson RC; Birney I; Harrison S; Christensen J; Rueda LM Int J Health Geogr; 2010 Feb; 9():11. PubMed ID: 20167090 [TBL] [Abstract][Full Text] [Related]
19. Mosquito-borne disease: a strategy for the future. Gillett JD Sci Prog; 1975 AUTUMN; 62(247):395-414. PubMed ID: 236595 [No Abstract] [Full Text] [Related]
20. Mathematical modelling of mosquito dispersal in a heterogeneous environment. Lutambi AM; Penny MA; Smith T; Chitnis N Math Biosci; 2013 Feb; 241(2):198-216. PubMed ID: 23246807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]