These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 24591453)
21. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. Brugueras S; Fernández-Martínez B; Martínez-de la Puente J; Figuerola J; Porro TM; Rius C; Larrauri A; Gómez-Barroso D Environ Res; 2020 Dec; 191():110038. PubMed ID: 32810503 [TBL] [Abstract][Full Text] [Related]
22. Fine-scale modelling finds that breeding site fragmentation can reduce mosquito population persistence. McCormack CP; Ghani AC; Ferguson NM Commun Biol; 2019; 2():273. PubMed ID: 31372512 [TBL] [Abstract][Full Text] [Related]
23. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. Göertz GP; Fros JJ; Miesen P; Vogels CBF; van der Bent ML; Geertsema C; Koenraadt CJM; van Rij RP; van Oers MM; Pijlman GP J Virol; 2016 Nov; 90(22):10145-10159. PubMed ID: 27581979 [TBL] [Abstract][Full Text] [Related]
24. The effects of vector movement and distribution in a mathematical model of dengue transmission. Chao DL; Longini IM; Halloran ME PLoS One; 2013; 8(10):e76044. PubMed ID: 24204590 [TBL] [Abstract][Full Text] [Related]
25. Zika and chikungunya: mosquito-borne viruses in a changing world. Shragai T; Tesla B; Murdock C; Harrington LC Ann N Y Acad Sci; 2017 Jul; 1399(1):61-77. PubMed ID: 28187236 [TBL] [Abstract][Full Text] [Related]
26. Mosquito-borne diseases. Tolle MA Curr Probl Pediatr Adolesc Health Care; 2009 Apr; 39(4):97-140. PubMed ID: 19327647 [TBL] [Abstract][Full Text] [Related]
27. Vector-borne diseases and their control. Russell RC Med J Aust; 1993 May; 158(10):681, 684-90. PubMed ID: 8487688 [TBL] [Abstract][Full Text] [Related]
28. The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control. Bellan SE PLoS One; 2010 Apr; 5(4):e10165. PubMed ID: 20405010 [TBL] [Abstract][Full Text] [Related]
29. Vector-virus interactions and transmission dynamics of West Nile virus. Ciota AT; Kramer LD Viruses; 2013 Dec; 5(12):3021-47. PubMed ID: 24351794 [TBL] [Abstract][Full Text] [Related]
30. Can Horton hear the whos? The importance of scale in mosquito-borne disease. Lord CC; Alto BW; Anderson SL; Connelly CR; Day JF; Richards SL; Smartt CT; Tabachnick WJ J Med Entomol; 2014 Mar; 51(2):297-313. PubMed ID: 24724278 [TBL] [Abstract][Full Text] [Related]
31. Agent-based modeling of malaria vectors: the importance of spatial simulation. Bomblies A Parasit Vectors; 2014 Jul; 7():308. PubMed ID: 24992942 [TBL] [Abstract][Full Text] [Related]
32. Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control. Ellis AM; Garcia AJ; Focks DA; Morrison AC; Scott TW Am J Trop Med Hyg; 2011 Aug; 85(2):257-64. PubMed ID: 21813844 [TBL] [Abstract][Full Text] [Related]
33. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Guerra CA; Reiner RC; Perkins TA; Lindsay SW; Midega JT; Brady OJ; Barker CM; Reisen WK; Harrington LC; Takken W; Kitron U; Lloyd AL; Hay SI; Scott TW; Smith DL Parasit Vectors; 2014 Jun; 7():276. PubMed ID: 24946878 [TBL] [Abstract][Full Text] [Related]
34. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes. Govindarajan M; Sivakumar R Parasitol Res; 2015 Feb; 114(2):601-12. PubMed ID: 25399815 [TBL] [Abstract][Full Text] [Related]
35. Transmission dynamics of lymphatic filariasis: density-dependence in the uptake of Wuchereria bancrofti microfilariae by vector mosquitoes. Snow LC; Michael E Med Vet Entomol; 2002 Dec; 16(4):409-23. PubMed ID: 12510894 [TBL] [Abstract][Full Text] [Related]
36. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Brown JJ; Pascual M; Wimberly MC; Johnson LR; Murdock CC Ecol Lett; 2023 Jul; 26(7):1029-1049. PubMed ID: 37349261 [TBL] [Abstract][Full Text] [Related]
37. The role of heterogeneity on the invasion probability of mosquito-borne diseases in multi-host models. Bolzoni L; Pugliese A; Rosà R J Theor Biol; 2015 Jul; 377():25-35. PubMed ID: 25886821 [TBL] [Abstract][Full Text] [Related]
38. Perceptions and practices of mosquito-borne diseases in Alabama - is concern where it should be? Morse W; Izenour K; McKenzie B; Lessard S; Zohdy S BMC Public Health; 2019 Jul; 19(1):987. PubMed ID: 31337359 [TBL] [Abstract][Full Text] [Related]
39. [Changes in range of mosquito-borne diseases affected by global climatic fluctuations]. Rydzanicz K; Kiewra D; Lonc E Wiad Parazytol; 2006; 52(2):73-83. PubMed ID: 17120987 [TBL] [Abstract][Full Text] [Related]
40. Influence of hosts on the ecology of arboviral transmission: potential mechanisms influencing dengue, Murray Valley encephalitis, and Ross River virus in Australia. Carver S; Bestall A; Jardine A; Ostfeld RS Vector Borne Zoonotic Dis; 2009 Feb; 9(1):51-64. PubMed ID: 18800866 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]