BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24591572)

  • 1. Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body.
    Kang D; Wang J; Hogan JO; Vennekens R; Freichel M; White C; Kim D
    J Physiol; 2014 May; 592(9):1975-92. PubMed ID: 24591572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an ATP-sensitive K(+) channel in rat carotid body glomus cells.
    Kim D; Kim I; Papreck JR; Donnelly DF; Carroll JL
    Respir Physiol Neurobiol; 2011 Aug; 177(3):247-55. PubMed ID: 21536154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of voltage-dependent K
    Wang J; Kim D
    J Physiol; 2018 Aug; 596(15):3119-3136. PubMed ID: 29160573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells.
    Kim D; Cavanaugh EJ; Kim I; Carroll JL
    J Physiol; 2009 Jun; 587(Pt 12):2963-75. PubMed ID: 19403596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TASK-1 (K
    Kang D; Wang J; Hogan JO; Kim D
    Adv Exp Med Biol; 2018; 1071():35-41. PubMed ID: 30357731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of K₂p channels in stimulus-secretion coupling.
    Kim D; Kang D
    Pflugers Arch; 2015 May; 467(5):1001-11. PubMed ID: 25476848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MaxiK potassium channels in the function of chemoreceptor cells of the rat carotid body.
    Gomez-Niño A; Obeso A; Baranda JA; Santo-Domingo J; Lopez-Lopez JR; Gonzalez C
    Am J Physiol Cell Physiol; 2009 Sep; 297(3):C715-22. PubMed ID: 19570892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in oxygen sensitivity of TASK in carotid body glomus cells during early postnatal development.
    Kim D; Papreck JR; Kim I; Donnelly DF; Carroll JL
    Respir Physiol Neurobiol; 2011 Aug; 177(3):228-35. PubMed ID: 21530688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CaV3.2 T-type Ca²⁺ channels in H₂S-mediated hypoxic response of the carotid body.
    Makarenko VV; Peng YJ; Yuan G; Fox AP; Kumar GK; Nanduri J; Prabhakar NR
    Am J Physiol Cell Physiol; 2015 Jan; 308(2):C146-54. PubMed ID: 25377087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of modulators of AMP-activated protein kinase on TASK-1/3 and intracellular Ca(2+) concentration in rat carotid body glomus cells.
    Kim D; Kang D; Martin EA; Kim I; Carroll JL
    Respir Physiol Neurobiol; 2014 May; 195():19-26. PubMed ID: 24530802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cystathionine-γ-lyase in hypoxia-induced changes in TASK activity, intracellular [Ca
    Wang J; Hogan JO; Wang R; White C; Kim D
    Respir Physiol Neurobiol; 2017 Dec; 246():98-106. PubMed ID: 28851593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells.
    Buckler KJ
    Pflugers Arch; 2012 Apr; 463(5):743-54. PubMed ID: 22419174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine stimulates depolarization and rise in cytoplasmic [Ca2+] in type I cells of rat carotid bodies.
    Xu F; Xu J; Tse FW; Tse A
    Am J Physiol Cell Physiol; 2006 Jun; 290(6):C1592-8. PubMed ID: 16436472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca(2+) concentration in rat carotid body glomus cells.
    Kim D; Kim I; Wang J; White C; Carroll JL
    Respir Physiol Neurobiol; 2015 Aug; 215():30-8. PubMed ID: 25956223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of rat carotid body glomus cells TASK-like channels by acute hypoxia is enhanced by chronic intermittent hypoxia.
    Ortiz FC; Del Rio R; Ebensperger G; Reyes VR; Alcayaga J; Varas R; Iturriaga R
    Respir Physiol Neurobiol; 2013 Feb; 185(3):600-7. PubMed ID: 23219812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia.
    López-López JR; González C; Pérez-García MT
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):429-41. PubMed ID: 9080372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells.
    Baron A; Frieden M; Chabaud F; Bény JL
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):691-706. PubMed ID: 8799892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of dihydropyridine-sensitive Ca2+ channels in stimulus-evoked catecholamine release from chemoreceptor cells of the carotid body.
    Obeso A; Rocher A; Fidone S; Gonzalez C
    Neuroscience; 1992; 47(2):463-72. PubMed ID: 1322510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen sensing with ion channels.
    Kim D
    Channels (Austin); 2014; 8(4):290-1. PubMed ID: 25068295
    [No Abstract]   [Full Text] [Related]  

  • 20. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia.
    Makarenko VV; Ahmmed GU; Peng YJ; Khan SA; Nanduri J; Kumar GK; Fox AP; Prabhakar NR
    J Neurophysiol; 2016 Jan; 115(1):345-54. PubMed ID: 26561606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.