BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24591572)

  • 21. Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen.
    Ganfornina MD; López-Barneo J
    J Gen Physiol; 1992 Sep; 100(3):401-26. PubMed ID: 1331289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues.
    López-Barneo J; Pardal R; Montoro RJ; Smani T; García-Hirschfeld J; Ureña J
    Respir Physiol; 1999 Apr; 115(2):215-27. PubMed ID: 10385035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemosensing at the carotid body. Involvement of a HERG-like potassium current in glomus cells.
    Overholt JL; Ficker E; Yang T; Shams H; Bright GR; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():241-8. PubMed ID: 10849664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voltage- and receptor-mediated activation of a non-selective cation channel in rat carotid body glomus cells.
    Wang J; Hogan JO; Kim D
    Respir Physiol Neurobiol; 2017 Mar; 237():13-21. PubMed ID: 28013061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that 5-HT stimulates intracellular Ca
    Murali S; Zhang M; Nurse CA
    J Physiol; 2017 Jul; 595(13):4261-4277. PubMed ID: 28332205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Augmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway.
    Summers BA; Overholt JL; Prabhakar NR
    J Neurophysiol; 2000 Sep; 84(3):1636-44. PubMed ID: 10980033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A1899, PK-THPP, ML365, and Doxapram inhibit endogenous TASK channels and excite calcium signaling in carotid body type-1 cells.
    O'Donohoe PB; Huskens N; Turner PJ; Pandit JJ; Buckler KJ
    Physiol Rep; 2018 Sep; 6(19):e13876. PubMed ID: 30284397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca(2+)-activated K+ channels in isolated type I cells of the neonatal rat carotid body.
    Wyatt CN; Peers C
    J Physiol; 1995 Mar; 483 ( Pt 3)(Pt 3):559-65. PubMed ID: 7539843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. K+ currents of glomus cells and chemosensory functions of carotid body.
    Donnelly DF
    Respir Physiol; 1999 Apr; 115(2):151-60. PubMed ID: 10385029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Augmentation of calcium current by hypoxia in carotid body glomus cells.
    Summers BA; Overholt JL; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():589-99. PubMed ID: 10849699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endothelin-1 and vasopressin activate Ca(2+)-permeable non-selective cation channels in aortic smooth muscle cells: mechanism of receptor-mediated Ca2+ influx.
    Nakajima T; Hazama H; Hamada E; Wu SN; Igarashi K; Yamashita T; Seyama Y; Omata M; Kurachi Y
    J Mol Cell Cardiol; 1996 Apr; 28(4):707-22. PubMed ID: 8732499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene expression analyses reveal metabolic specifications in acute O
    Gao L; Bonilla-Henao V; García-Flores P; Arias-Mayenco I; Ortega-Sáenz P; López-Barneo J
    J Physiol; 2017 Sep; 595(18):6091-6120. PubMed ID: 28718507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ca2+ homeostasis and exocytosis in carotid glomus cells: role of mitochondria.
    Yan L; Lee AK; Tse FW; Tse A
    Cell Calcium; 2012 Feb; 51(2):155-63. PubMed ID: 22209034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia.
    O'Donohoe PB; Turner PJ; Huskens N; Buckler KJ; Pandit JJ
    Respir Physiol Neurobiol; 2019 Feb; 260():17-27. PubMed ID: 30389452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for protein kinase involvement in the 5-HT-[Ca
    Leonard EM; Zhang M; Nurse CA
    Exp Physiol; 2019 Feb; 104(2):244-253. PubMed ID: 30456914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body.
    López-López J; González C; Ureña J; López-Barneo J
    J Gen Physiol; 1989 May; 93(5):1001-15. PubMed ID: 2738574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Angiotensin II activation of Ca(2+)-permeant nonselective cation channels in rat adrenal glomerulosa cells.
    Lotshaw DP; Li F
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1705-15. PubMed ID: 8944655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
    Tan ZY; Lu Y; Whiteis CA; Benson CJ; Chapleau MW; Abboud FM
    Circ Res; 2007 Nov; 101(10):1009-19. PubMed ID: 17872465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of carotid body O2 sensitivity following chronic postnatal hyperoxia in rats.
    Bavis RW; Kim I; Pradhan N; Nawreen N; Dmitrieff EF; Carroll JL; Donnelly DF
    Respir Physiol Neurobiol; 2011 Jun; 177(1):47-55. PubMed ID: 21420511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscarinic modulation of TASK-like background potassium channel in rat carotid body chemoreceptor cells.
    Ortiz FC; Varas R
    Brain Res; 2010 Apr; 1323():74-83. PubMed ID: 20153302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.