BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24591588)

  • 1. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths.
    Yancey PH; Gerringer ME; Drazen JC; Rowden AA; Jamieson A
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4461-5. PubMed ID: 24591588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiomes of Hadal Fishes across Trench Habitats Contain Similar Taxa and Known Piezophiles.
    Blanton JM; Peoples LM; Gerringer ME; Iacuaniello CM; Gallo ND; Linley TD; Jamieson AJ; Drazen JC; Bartlett DH; Allen EE
    mSphere; 2022 Apr; 7(2):e0003222. PubMed ID: 35306867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans.
    Kelly RH; Yancey PH
    Biol Bull; 1999 Feb; 196(1):18-25. PubMed ID: 25575382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmolyte Adjustments as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates (Amblyraja hyperborea) along a Depth Gradient.
    Yancey PH; Speers-Roesch B; Atchinson S; Reist JD; Majewski AR; Treberg JR
    Physiol Biochem Zool; 2018; 91(2):788-796. PubMed ID: 29315031
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Gerringer ME; Linley TD; Jamieson AJ; Goetze E; Drazen JC
    Zootaxa; 2017 Nov; 4358(1):161-177. PubMed ID: 29245485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of trimethylamine oxide and habitat depth within and among species of teleost fish: an analysis of causation.
    Samerotte AL; Drazen JC; Brand GL; Seibel BA; Yancey PH
    Physiol Biochem Zool; 2007; 80(2):197-208. PubMed ID: 17252516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the key factors affecting the trimethylamine N-oxide content of teleost fishes collected from the marginal seas of China and the epipelagic zone of the northwest Pacific Ocean.
    Hu Q; Zhao W; Qu K; An N; Li L; Wei Y; Bai Y; Jiang T; Chen J; Dai F; Wang H; Cui Z
    Sci Total Environ; 2023 Nov; 901():165577. PubMed ID: 37467983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea.
    Mu Y; Bian C; Liu R; Wang Y; Shao G; Li J; Qiu Y; He T; Li W; Ao J; Shi Q; Chen X
    PLoS Genet; 2021 May; 17(5):e1009530. PubMed ID: 33983934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colonization of the deep sea by fishes.
    Priede IG; Froese R
    J Fish Biol; 2013 Dec; 83(6):1528-50. PubMed ID: 24298950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.
    Brown A; Thatje S
    Biol Rev Camb Philos Soc; 2014 May; 89(2):406-26. PubMed ID: 24118851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour.
    Jamieson AJ; Fujii T; Solan M; Matsumoto AK; Bagley PM; Priede IG
    Proc Biol Sci; 2009 Mar; 276(1659):1037-45. PubMed ID: 19129104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreasing urea∶trimethylamine N-oxide ratios with depth in chondrichthyes: a physiological depth limit?
    Laxson CJ; Condon NE; Drazen JC; Yancey PH
    Physiol Biochem Zool; 2011; 84(5):494-505. PubMed ID: 21897086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Success of the Hadal Snailfishes.
    Gerringer ME
    Integr Org Biol; 2019; 1(1):obz004. PubMed ID: 33791521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?
    Treberg JR; Speers-Roesch B
    J Exp Biol; 2016 Mar; 219(Pt 5):615-25. PubMed ID: 26936637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes.
    Gerringer ME; Yancey PH; Tikhonova OV; Vavilov NE; Zgoda VG; Davydov DR
    FEBS J; 2020 Dec; 287(24):5394-5410. PubMed ID: 32250538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure.
    Yancey PH; Rhea MD; Kemp KM; Bailey DM
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):371-6. PubMed ID: 15529747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth.
    Nunoura T; Takaki Y; Hirai M; Shimamura S; Makabe A; Koide O; Kikuchi T; Miyazaki J; Koba K; Yoshida N; Sunamura M; Takai K
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1230-6. PubMed ID: 25713387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated levels of trimethylamine oxide in deep-sea fish: evidence for synthesis and intertissue physiological importance.
    Treberg JR; Driedzic WR
    J Exp Zool; 2002 Jun; 293(1):39-45. PubMed ID: 12115917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis.
    Yancey PH; Siebenaller JF
    J Exp Biol; 1999 Dec; 202(Pt 24):3597-603. PubMed ID: 10574736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.